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Abstract5

Parameter uncertainty and sensitivity analysis is especially important for large, complex6

individual-based models intended to support management decisions. Yet these models are7

difficult to analyze because they tend to have many parameters and long execution times.8

We define a three-phase analysis strategy. Phase 1 examines model sensitivity to each pa-9

rameter by itself. Phase 2 identifies interactions in model response to a limited number of10

parameter pairs. Phase 3 examines how robust decision-support results are to parameter11

uncertainty: several management alternatives are defined and simulated, then the analysis12

looks at how often the model’s ranking of the alternatives changes as a limited number of13

important parameters are perturbed. This strategy was applied to inSTREAM, an IBM that14

simulates effects of river management on trout populations. The analysis found no evidence15

of extreme sensitivity or “error propagation”; one parameter had effects that were stronger16

than anticipated but easily explained. Decision-support results of inSTREAM were highly17

robust to parameter uncertainty. Energetic parameters (for food intake and metabolism)18

were especially important, a result also found in other sensitivity analyses of large IBMs.19

Key words: sensivity analysis, uncertainty analysis, robustness analysis, individual-based20

model, decision-support21

1 Introduction22

Analyzing the effects of parameter uncertainty on results is an important step in23

modeling, especially for large and complex models and for models used to make24

management decisions. The most complex models used for environmental manage-25

ment are now often individual-based models (IBMs); examples include the IBM of26
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habitat alteration effects on shorebirds by Goss-Custard et al. (2006), an IBM of27

how river flow fluctuations affect juvenile fish (Grand et al., 2006; this and other28

examples are also described in the online supplement to Grimm et al., 2006), and29

the trout IBM we use here. These large IBMs represent the physiology and behavior30

of individuals, and processes of the environment the individuals live in, using many31

equations and parameters. Consequently, potential clients of such models are nat-32

urally concerned about how robust results are to parameter uncertainty. The once-33

widespread belief that IBMs are inherently subject to “error propagation” (Mooij34

and DeAngelis 1999) also contributes to skepticism of their robustness to parameter35

values.36

Sensitivity and uncertainty analysis can be thought of as having two major goals37

(Saltelli et al. 2000). First is providing understanding of the model: how are its out-38

puts related to its assumptions, parameters, and inputs? Second is providing infor-39

mation on how robust model results are: given the uncertainties in its components,40

how much confidence should users have in model results? Parameter sensitivity41

and uncertainty analysis of complex simulation models is typically conducted by42

executing models many times while varying the parameter values (see, e.g., Rose43

1989; Saltelli et al. 2000). Varying all parameters simultaneously allows analysis44

of model response to individual parameters and combinations of parameters.45

Unfortunately, many of the characteristics that make IBMs useful for complex eco-46

logical and environmental management problems also make parameter analysis dif-47

ficult (several of these characteristics were identified by Rose, 1989):48

• Because they represent a variety of processes, IBMs typically have many para-49

meters. Many of these are likely to have reliable values from laboratory research50

on individuals, field measurements of environmental processes, etc., but often51

some parameter values can only be reasonable estimates and others are highly52

uncertain.53

• Many IBMs are computationally intensive so the feasible number of model runs54

is limited.55

• IBMs can produce several different kinds of output that are each of interest (e.g.,56

population abundance and biomass; size and age distributions; spatial distribu-57

tions), and parameters can have different effects on different outputs.58

• IBMs are usually stochastic, so effects of parameter values can be masked by59

“noise”.60

• Model equations can be of any form, so model results cannot be assumed to vary61

linearly, or even continuously, with parameter values.62

• In some IBMs, as in nature, different processes are important in different sit-63

uations; e.g., a physiological process such as temperature stress may be very64

important when environmental conditions are stressful and completely unimpor-65

tant in other situations. Hence, a parameter’s importance can be highly context-66

dependent.67
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As a consequence of these characteristics, standard parameter analysis strategies68

can be infeasible or incomplete for complex IBMs. Even if computation was not69

a limitation, a complete, traditional parameter sensitivity analysis could produce70

more information than is practical to analyze and understand. Few parameter sensi-71

tivity analyses of complex IBMs have been published, and those we found (Stillman72

et al. 2000; Shirley et al. 2003; Amano et al. 2006) only analyzed model response73

to each parameter by itself and did not analyze interactions among parameters or74

effects of parameter uncertainty on conclusions drawn from the model.75

In this paper we define a general strategy for parameter sensitivity and robustness76

analysis of large, management-oriented IBMs. The strategy (described in Sect. 2)77

includes objectives and analysis methods that make a useful tradeoff between what78

we would like to know about a model and what is feasible to learn, and follows79

conventional sensitivity analysis approaches to the extent possible. We illustrate the80

strategy (Sect. 3) by applying it to inSTREAM, an IBM of stream trout designed to81

support river management decisions (Railsback and Harvey, 2001, 2002).82

While we focus only on sensitivity and uncertainty of parameters (equation coeffi-83

cients), methods similar to those we describe could also be used to analyze effects84

of model inputs (initial conditions, time-series habitat data, etc.). Analysis of struc-85

tural uncertainty in IBMs (the effects of key assumptions) is discussed by Grimm86

et al. (2005) and in Ch. 9 of Grimm and Railsback (2005).87

2 The Strategy88

Our strategy for analyzing effects of parameter uncertainty on complex IBMs has89

three phases. While phases 2 and 3 use the results of previous phases, each phase90

has a distinct objective. The strategy is intended to provide a general understanding91

of how sensitive the model is to parameter values, identify individual parameters92

and parameter combinations that results are most sensitive to, and estimate how93

robust management-related conclusions drawn from the model are to parameter94

uncertainty.95

We assume that, prior to Phase 1, all parameters have values estimated from the96

best available information (which can include, for some parameters, calibration of97

the model to observations). We refer to these as the “standard” parameter values.98

2.1 Phase 1: Individual parameter sensitivity99

The objectives of Phase 1 are to (1) determine how sensitive key model results are100

to each parameter, over the parameter’s full range of feasible values; (2) develop a101
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general understanding of how robust model output is to parameter values; and (3)102

identify the parameters most important for further analysis in phases 2 and 3. In103

conventional approaches to sensitivity analysis of simulation models, the first two104

of these objectives are addressed (along with objectives of our Phase 2) by running105

the model many times while varying all parameters over wide ranges (Rose, 1989).106

Our Phase 1 is used to avoid the computational and analysis burdens of this con-107

ventional approach (Sect. 2.2); it evaluates sensitivity to each parameter separately108

so less-important parameters can be excluded from later phases.109

The Phase 1 steps are:110

1) Identify one (or a few) most-important model outputs to analyze. For manage-111

ment-oriented IBMs, these outputs are likely to be population-level summary sta-112

tistics that are relevant to management questions such as population viability or113

production; an example is the abundance of reproductive adults, averaged over the114

entire simulation period from “census” data taken from the model once per simu-115

lated year. Output from early in the simulation can be excluded to keep the model’s116

initial conditions from hiding effects of parameter values.117

2) For each parameter, determine a range of feasible values. This step is critical118

and challenging. Analysis results will be highly dependent on the minimum and119

maximum feasible values selected here, and thought and judgment are required120

to identify useful values. Our experience indicates that each parameter should be121

examined carefully by people familiar with the information used to develop its122

standard value.123

Simply varying all parameters over a consistent range (e.g., ±50% of the standard124

value) (e.g., Amano et al. 2006) seems straightforward and unbiased (Rose, 1989),125

but fails in at least two situations. First, some parameters are closely based on reli-126

able data (e.g., from laboratory experiments on individual organisms), and the data127

can provide a much better estimate of the parameter’s feasible range. For example,128

the data may show that the parameter value is very unlikely to be outside 5% of the129

standard value and values beyond 5% may produce absurd results (an example is in130

Sect. 3.1). Conversely, the data may show that the value is highly uncertain and the131

feasible range very large. The second situation is when parameter values are log-132

ically constrained. Survival probability parameters for risks such as predation are133

an example: the daily survival probability cannot possibly be greater than 1.0, and134

often is unlikely to be less than 0.95 (in which case half the population would be135

killed within 14 days). Hence, the feasible range of such a parameter is constrained136

to much less than ±50%. (Ignoring this constraint resulted in a well-known ex-137

ample of absurd sensitivity analysis results, discussed by Mooij and DeAngelis,138

1999.)139

3) For a parameter, identify a limited number of values, spaced systematically over140

the parameter’s range of feasible values. The same number of values are used for141
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all parameters, and should be high enough to keep analysis results from being dom-142

inated by stochastic noise, but not unnecessarily high because the required number143

of model runs for Phase 1 is equal to this number times the number of parame-144

ters analyzed. These parameter values could be spaced evenly over the parameter’s145

range, but even spacing may not represent the distribution of values well if the pa-146

rameter’s standard value is not at the center of its range (e.g., if feasible ranges are147

defined as -50% to +100% of the standard value).148

For each of these parameter values, also determine its value scaled to a range of 0–149

1, where 0.0 corresponds to the low end and 1.0 to the high end of the parameter’s150

range of feasible values. For example, if five values are chosen for all parameters,151

and a parameter’s selected values are evenly spaced over a range of 20 to 100, the152

scaled values for the parameter are 0, 0.25, 0.5, 0.75, and 1.0.153

4) Execute the IBM once for each value identified in step 3. All other parameters154

are held at their standard value.155

5) Calculate a sensitivity index for the parameter. This index is the slope of the156

model’s output variable (from Step 1) with respect to the scaled parameter values157

determined in Step 3, determined using linear regression. Because parameter values158

are scaled, this sensitivity index can be compared across parameters.159

However, it is also important to graph and visually inspect how the model output160

varied with the parameter’s values to see if the relationship is nonlinear. For exam-161

ple, model output could peak at an intermediate parameter value, in which case the162

sensitivity index could be evaluated as the mean slope of the relation (a) below and163

(b) above the peak.164

6) Repeat steps 3–5 for all parameters, and examine the sensitivity indexes for165

each to address the Phase 1 objectives. Of special importance is identifying any pa-166

rameters with unexpectedly strong effects on model results. Such high-sensitivity167

parameters may indicate model equations or processes that are more important than168

anticipated; or they may indicate that the range of feasible values needs to be re-169

vised because it includes regions that produce absurd results.170

2.2 Phase 2: Parameter interactions171

The objective of Phase 2 is to investigate the frequency and strength of parame-172

ter interactions. “Parameter interactions” occur when a model’s sensitivity to one173

parameter depends on the value of another parameter (Rose, 1989). To our knowl-174

edge, little if anything has been published on parameter interactions in IBMs, most175

likely because of the computational burden of conventional analysis approaches.176

Latin hypercube sampling (LHS; Rose 1989; Saltelli et al. 2000) makes this facto-177

rial approach more efficient, but even the analysis of parameter interaction results178
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becomes a large project when the number of parameters is high: the number of po-179

tential pairwise interactions is n(n−1)
2 where n is the number of parameters, so even180

with only 20 parameters there are 190 potential interactions to analyze.181

We developed an analysis approach that takes advantage of the individual-parameter182

sensitivity information generated in Phase 1 to limit the computational demand.183

First, the Phase 1 information is used to select only a small number of parameters184

with high sensitivity index values to investigate for interactions. Then each pair-185

wise combination of these Phase 2 parameters is examined for interactions. In the186

absence of interactions, when two parameters are varied the model results fall ap-187

proximately on a plane (for parameters to which the model responds approximately188

linearly). The slope SE of this plane can be estimated from Phase 1 results: if Ia and189

Ib are the Phase 1 sensitivity indexes for parameters a and b, then SE =
√

Ia + Ib.190

If there is an interaction, model results will no longer fall on a plane when two191

parameters are varied simultaneously. Hence, the presence of interactions between192

two parameters can be detected by any statistic that indicates the model response is193

non-planar with respect to the parameters. We used a somewhat arbitrary but simple194

and conservative (unlikely to detect interactions when they do not occur) measure:195

an interaction was assumed to occur if the model response slope (using linear re-196

gression on scaled parameter values from Phase 1), from simulations in which both197

parameters are perturbed simultaneously, differs from SE by more than a specified198

amount.199

The specific methods we used for each pair of Phase 2 parameters are:200

1) Calculate SE .201

2) Select three values for each parameter: the standard value and the low and high202

ends of the range of feasible values from Phase 1.203

3) Run the model for all nine combinations of values for the two parameters; and204

then replicate this factorial experiment at least two additional times (by using dif-205

ferent random number seeds). (One of the nine combinations will actually be the206

standard value of all parameters so need not be re-executed for each parameter207

pair.)208

4) Using linear regression, estimate the observed slope SO of the model output’s209

response plane with respect to the scaled parameter values: SO =
√

Sa +Sb where210

Sa and Sb are the regression coefficients for parameters a and b from the nine sim-211

ulations. Calculate SO separately for each replicate of the factorial experiment, and212

determine the mean and standard deviation in SO among the replicates. 1
213

5) Define an interaction among the parameters as occurring if SE is outside the214

confidence interval defined by the mean ± two standard deviations of SO.215

1 Paul–verify whether this is actually exactly what you did.
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This approach is obviously not appropriate for parameters that the model responds216

to in a strongly nonlinear way. In such cases, alternatives could include using a217

linearizing transformation of results or simply examining how the model’s response218

to the parameter with nonlinear effects differs among several discrete values of the219

other parameter.220

2.3 Phase 3: Robustness of decision-support results221

The objective of Phase 3 is to evaluate the effect of parameter uncertainty and222

sensitivity on the ultimate use of management IBMs: comparing alternative man-223

agement actions. The motivation for Phase 3 is a problem discussed by Drechsler224

(1998): that conventional parameter sensitivity analyses do not tell us how para-225

meter values affect such decision-support applications of models. Even if a model226

is highly sensitive to an uncertain parameter, it is not clear that this uncertainty227

affects the relative model results when management alternatives are simulated. To228

address this objective, we use a robustness analysis approach (see Ch. 9 of Grimm229

and Railsback 2005), asking how robust decision-support results from the IBM are230

to parameter uncertainty.231

Our Phase 3 methods were modified from the approaches of Drechsler (2000), who232

addressed effects of parameter uncertainty on management alternatives in models233

that represent these alternatives via different sets of parameter values. We assume234

instead that, in complex IBMs, alternative management scenarios are represented235

as alternative sets of input data (e.g., initial population characteristics, spatial in-236

put describing habitat conditions, or time series input of managed variables such as237

river flow or harvest levels), while parameter values remain unchanged across sce-238

narios. The general approach is to simultaneously vary a small number of important239

parameters using LHS, and examine how the IBM’s ranking of several management240

scenarios is affected. Phase 3 uses the following steps.241

1) Define the management scenarios and develop a set of input representing each.242

If this analysis is being conducted for an actual management application of the243

IBM, then real management alternatives can be used. Otherwise, hypothetical but244

realistic scenarios can be developed. The number of model runs required for the245

analysis increases linearly with the number of scenarios (s), so not many should246

be used; but hypothetical scenarios should reflect the range of inputs (and kinds247

of inputs that could vary) in real applications. This step also includes defining the248

IBM output(s) used to rank the management scenarios. The IBM should be run for249

several replicates of each scenario, using standard parameter values, to determine250

how much the selected output differs among the scenarios and how much stochastic251

noise there is.252

2) Select the parameters to be analyzed. Because we use LHS, the number of model253
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runs required for Phase 3 does not necessarily increase directly with the number254

of parameters varied (Rose, 1989). However, including more Phase 3 parameters255

does increase the number of model runs needed to provide confidence that any256

strong effects that one parameter are not swamped and that important parameter257

combinations have not been missed.258

Judgment is important in selecting the Phase 3 parameters. A primary consideration259

is the individual-parameter sensitivity results of Phase 1: the parameters with the260

highest sensitivity index values from Phase 1 deserve consideration for Phase 3,261

although such parameters may be excluded if their values are relatively certain262

(e.g., from laboratory studies). Parameters commonly used to calibrate the IBM263

should also be included in Phase 3. One way we kept the number of parameters low264

was to include only one parameter for a particular equation or process in the IBM,265

even if several of its parameters had high sensitivity values from Phase 1.266

3) Definite a distribution (treated as a probability density function, PDF) for the267

value of each parameter. Triangular and rectangular distributions are useful because268

they provide distinct lower and upper bounds. We used triangular distributions with269

the peak at the parameter’s standard value and the ends at the lower and upper270

bounds determined in Phase 1.271

4) Divide each parameter’s distribution into k intervals of equal probability, from272

which samples will be drawn during LHS. The value of k should be at least three,273

but there seems to be little reason for it to be much higher than perhaps four.274

5) Conduct the LHS to determine which interval values are drawn from for each275

parameter, for a block of model runs (see, e.g., Sect. 2.2 of Rose, 1989). A “block”276

is k model runs, with values for each parameter chosen so each run’s value is from277

a different interval. In our example below, we use k = 3, so each parameter’s dis-278

tribution is broken into 3 intervals (low, medium, and high; L, M, and H). For a279

block of 3 model runs, these 3 intervals are randomly shuffled for each parameter:280

the first parameter might have values from interval M in run 1, L in run 2, and H281

in run 3; the second parameter might have values from H, M, and then L; the third282

parameter from H, L, M, etc. (The same interval is never used twice for the same283

parameter in the same block of runs.)284

6) Draw values of each parameter randomly from within its LHS interval, for each285

model run. To do so, we treated each interval of the parameter distributions (L, M,286

and H) as a separate PDF, so values with higher probability density are more likely287

to be drawn. For each parameter i and model run k, determine the parameter values288

and their associated likelihood (over the parameter’s total distribution) pi,k.289

7) Execute the block of model runs. For each of the k parameter sets in the block,290

the IBM is run for each of the s management scenarios.291

8) Determine the expected value Es for each management scenario s, for the block292
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of model runs:293

Es =
Σk

j=1PjO j

Σk
j=1Pj

294

where O is the output from each model run and P is the total likelihood of a model295

run, calculated by multiplying together the values of pi,k for each parameter. De-296

termine the rank of each scenario: the scenario with rank 1 has the highest value of297

Es, etc., up to rank s, which has the lowest Es.298

9) Repeat steps 5–8 for additional blocks, looking at the management scenario rank-299

ings for each block of model runs. Stop after it is sufficiently clear how much the300

rankings vary among blocks. One way to determine when enough blocks have been301

executed is to calculate, after each new block is executed, the value of Es of each302

scenario over all the completed blocks. When scenario rankings from these cumu-303

lative values of Esno longer change as more blocks are executed, the analysis can304

stop.305

This approach weights the results for each set of parameter values by the likelihood306

of those values: results from runs with parameter values farther, on average, from307

the standard values are given less weight in the analysis. Some may feel that this308

approach underestimates effects of parameter uncertainty, or is simply too hard to309

explain. An alternative is, in step 8, to look at the unweighted rankings from each310

parameter set (O1–Ok instead of Es).311

3 Example: Parameter Sensitivity of inSTREAM312

We illustrate the sensitivity analysis strategy via an application to inSTREAM,313

an IBM designed to predict effects of river management (e.g., changes in daily314

flow, temperature, or turbidity) on trout populations (Railsback and Harvey, 2001,315

2002; www.humboldt.edu/~ecomodel/instream.htm). In this IBM, site charac-316

teristics and management alternatives are represented via input data such as habitat317

cell characteristics and daily flow, temperature, and turbidity values. Only eight318

habitat parameters are used, mainly to determine daily food availability from hy-319

draulic conditions in each cell. Many more parameters are used as coefficients in320

algorithms representing trout behaviors (e.g., feeding, habitat selection, spawn-321

ing), physiological processes (e.g., growth, reproduction), and a variety of mor-322

tality risks. We analyzed a total of 90 parameters. These range in uncertainty from323

those with fairly well-known values determined from extensive data (e.g., lab ex-324

periments on feeding and bioenergetics; field measurements of fecundity), to those325

representing processes that are extremely difficult to observe (e.g., how predation326

risk varies with water depth or velocity).327
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For all of the analyses we focused on only one of the many outputs produced by328

inSTREAM: the biomass of adult trout (age 1 or older) as censused once per sim-329

ulated year in mid-October, averaged over 11 simulated years. (Results from the330

first three of 14 simulated years were ignored as potentially influenced by initial331

conditions.)332

3.1 Phase 1: Individual parameter sensitivity333

To develop the Phase 1 individual-parameter sensitivity indexes, we used seven334

values for each parameter, with the first value at the low end of the range, the fourth335

value being the parameter’s standard value, and the seventh value at the high end336

of the range. Parameter values were scaled to a range of 0–1, so the seven values of337

each parameter had scaled values of 0.0, 0.167, 0.333, 0.5, 0.667, 0.833, and 1.0.338

Feasible ranges of parameters were defined by the authors of inSTREAM, who339

considered the parameter’s meaning and the information used to estimate its stan-340

dard value. In one instance, preliminary results led us to go back and reconsider the341

ranges selected for parameters. Two parameters control the length-weight relation342

in the simulated trout: as trout accumulate weight, their length is updated using the343

(inverted) empirical relationship:344

f ishWeight = f ishWeightParamA× f ishLength f ishWeightParamB.345

Initially we simply assumed fishWeightParamA and fishWeightParamB had feasible346

ranges of ±5% 2 ; however, results were absurd for parameter values at the extremes347

of this range (e.g., the model produced trout weighing a few grams but many meters348

long). A more careful review of the data (measured lengths and weights of real349

trout) showed that the feasible ranges of these parameters were much smaller.350

The Phase 1 results produced no major surprises and no indication of extreme sen-351

sitivity to parameter values, but they were highly informative. The model exhibited352

low sensitivity to a large majority of parameters (Fig. 1): 60% of parameters have353

sensitivity index less than 500. A few parameters had high sensitivity index values:354

11% of parameters had sensitivity above 2000, and two had values above 3000. The355

parameters we most expected to have strong effects on inSTREAM results did in356

fact have high sensitivity indexes: two parameters we use for calibration (control-357

ling food availability and risk of predation by terrestrial animals) had sensitivity358

indexes of 1800 and 3300. However, two other parameters we use to calibrate ju-359

venile trout size and abundance (representing a second food source and risk of360

predation by other fish) had relatively little effect on the adult trout predictions361

2 Paul needs to corroborate this.
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(sensitivity values less than 1000). The parameter with highest sensitivity repre-362

sents how the risk from terrestrial predators varies with water depth; this result363

was not anticipated but in retrospect makes sense: these predators are the dominant364

cause of mortality for simulated adults and depth (a) strongly affects the risk and365

(b) varies widely over space.366

The prevalence of parameters with low sensitivity values does not mean that many367

of inSTREAM’s parameters are unnecessary because they have little effect on re-368

sults. Some of these parameters are necessary to represent one end of a function369

(e.g., the logistic curve for how predation risk varies with depth) that the model370

is sensitive to the other end of. Other parameters represent processes that are not371

important at the study site we used but likely would be important at other sites; for372

example, several parameters represent effects of extreme temperatures, which do373

not occur at the site used in this analysis.374

Only one parameter produced a clearly non-linear and peaked response. This para-375

meter is the time horizon over which trout make risk–growth tradeoffs in selecting376

their habitat cell; Railsback et al. 1999. Low values give most emphasis to avoiding377

predation and high values give most emphasis to avoiding starvation; adult trout378

biomass was highest at intermediate values.379

3.2 Phase 2: Parameter interactions380

The ten parameters with Phase 1 sensitivity values above 2000 were selected for381

Phase 2, so there were 45 pairwise interaction analyses. Using the methods de-382

scribed in Sect. 2.2 with three replicate runs for each parameter value combination,383

we found interactions in 42 of these 45 analyses. In some cases the interactions384

were quite strong: the mean value of SO over three replicates was as much as 23385

times greater than SE ; in 11 parameter pairs, SO was over 5 times greater than SE .386

All the parameters in these interactions control food intake or metabolic processes.387

It is not clear how unique our finding of widespread parameter interactions is, as we388

found no similar analyses of complex IBMs. These results indicate that attempting389

to calibrate inSTREAM by varying one parameter at a time could be frustrating.390

(Instead, we execute factorial calibration experiments varying the 2-3 calibration391

parameters simultaneously).392

3.3 Phase 3: Robustness of decision-support results393

For Phase 3 we further reduced the number of analyzed parameters to seven. We394

used a triangular PDF to describe value ranges for each parameter; the PDF had its395

peak at the parameter’s standard value and a range matching the range of values396
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used in Phase 1. With k = 3 ranges for LHS, we broke each parameter’s full range397

into 99 evenly spaced values, and calculated the likelihood for each such that the398

sum of likelihoods over the 99 values equals 1.0. The boundaries between the three399

parameter ranges (L, M, H) occur where the sum of likelihoods for values to the400

left equal 0.33 and 0.67. For parameters with their standard value in the center of401

their distribution, the low parameter range includes the first 40 of the 99 equally402

spaced values; the middle range includes the middle 19 values; and the high range403

includes the upper 40 values.404

The decision-support results we analyzed are predicted trout biomass under four405

hypothetical stream management scenarios. These scenarios represent alternative406

management measures for a water diversion and timber harvest (both imaginary)407

on a mid-sized stream. The water diversion would reduce stream flow; flow affects408

the area of habitat and the amount of food for trout, and water depths and veloci-409

ties. The timber harvest is assumed to increase turbidity (cloudiness of the water),410

which reduces feeding success. The scenarios (Table 1) differ in the minimum flow411

required to remain in the stream and the extent to which turbidity is increased. In412

simulations using standard parameter values, inSTREAM predicted scenarios 1-3413

to produce trout biomass averaging 52, 76, and 72% of the baseline scenario 4.414

Scenarios 2 and 3 produce quite similar results; in fact the results in Fig. 2 for415

these two scenarios are not significantly different (one-way analysis of variance416

with Bonferroni comparison of means, p=0.05, n=10).417

Even though absolute results from inSTREAM varied strongly among the different418

parameter sets, parameter variation had little effect on the relative rank of the four419

management scenarios. The likelihood-weighted average trout biomass values Es420

produced exactly the same ranking of the scenarios as we increased the number of421

three-parameter-set blocks from one to 15 (Fig. 3), and the values of Es stabilized422

after 5 blocks were executed. The baseline (scenario 4) produced highest trout bio-423

mass, followed in rank of descending biomass by scenarios 2, 3, and 1. In fact, all424

blocks, examined individually, produced the same likelihood-weighted rankings,425

even for the very similar scenarios 2 and 3. This consistency occurred even though426

the predicted trout biomass varied widely: some model runs produced complete ex-427

tinction of the population and others produced biomass as much as 20 times that428

predicted with standard parameters.429

Interestingly, we found the values of Es to be much higher than the results obtained430

with standard parameter values (compare Figs. 2 and 3). This discrepancy occurs431

because, in the LHS analysis, parameter combinations that negatively affect simu-432

lated populations can never reduce trout biomass to less than zero but there is no433

limit on how much biomass can increase under parameter combinations with posi-434

tive effects. Hence, simulated biomass could be only 100% lower than the biomass435

with standard parameter values but was as much as 2,000% higher.436

The unweighted results are also quite consistent. When we simply averaged the437
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simulated trout biomass for each scenario over the three model runs in each LHS438

block, we obtained the correct ranking in 13 of 15 blocks. The best and worst439

management scenarios were correctly identified in all 15 blocks.440

4 Conclusions441

Scientists develop and use complex models and IBMs because they are more like442

the real systems we study and, therefore, let us address more complex aspects of443

those systems. But one unfortunate consequence of being more like real systems is444

that complex models are harder to analyze and understand (Grimm and Railsback,445

2005). Traditional uncertainty and sensitivity analysis methods cannot provide a446

complete picture of how complex IBMs respond to parameter variation because447

these models typically have many parameters, produce a variety of results, take448

a long time to execute, are stochastic, and are nonlinear in many ways. Yet their449

complexity makes parameter analysis especially important for these models.450

The three-phase strategy we developed appears to be a useful compromise between451

what modelers need to know about parameter sensitivity of complex IBMs and452

what is computationally feasible. Phase 1 is especially important for identifying453

parameters most deserving attention in calibration and in research to reduce uncer-454

tainties. Phase 3 seems especially important for giving a model’s clients an indica-455

tion of how robust conclusions drawn from the model are. While Phase 2 results456

may be less urgent for model development or application, its analysis of parameter457

interactions seems important for developing a solid understanding of how an IBM458

behaves.459

Even though our analysis strategy is a compromise, it still requires significant com-460

putational resources. In our example analysis we report results of 1660 runs of461

inSTREAM, which each take one half to several hours to execute on a desktop462

computer (the execution time varies widely as it depends on the number of trout463

“alive” during the run). However, the strategy is flexible and adaptable: in appli-464

cations to other models, users can control the computational effort by altering the465

number of values for each parameter in Phase 1, the number of parameters included466

in phases 2 and 3, the number of replicate simulations used in Phase 2, and the value467

of k in Phase 3. On the other hand, we only conducted our analysis for one study468

site (the process could be completely repeated for additional sites) and focused only469

on one particularly important output of the IBM.470

Our example analysis of inSTREAM confirmed some of our expectations about471

which parameters have strong effects. But the analysis also indicated that some472

parameters we use for calibration have only moderate effects on key outputs and473

identified one parameter—for how predation risk varies with depth, which is unfor-474

tunately difficult to measure—that has greater importance than we expected. At the475
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same time, the analysis provided evidence that management support results from476

the model are quite robust to parameter uncertainty.477

Our sensitivity analysis of inSTREAM found results generally more sensitive to pa-478

rameters for food availability and metabolic processes than to behavior-related pa-479

rameters, as did sensitivity analyses of at least two other large IBMs (Amano et al.,480

2006; Stillman et al., 2000). While representing behavior is undoubtedly critical481

for the accuracy of these IBMs, the consistent importance of food and metabolic482

parameters indicates that energetic processes are also very important and deserve483

careful attention in model development and testing. In fact, behavior in these three484

models is strongly determined by energetic processes, likely one reason why food485

and metabolic parameters are so important.486
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Table 1
Hypothetical management scenarios used in the Phase 3 analysis of inSTREAM.

Scenario Minimum flow (cubic meters per
second)

Turbidity (increase from
baseline)

1 (no
mitigation)

0.3 60%

2 (mitigated
flow)

0.5 60%

3 (mitigated
turbidity)

0.3 20%

4 (baseline) — —
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Figure Captions541

Figure 1: Phase 1 parameter sensitivity index distribution for inSTREAM. There is542

one dot for each parameter analyzed; its X value is the parameter’s sensitivity index543

value and its Y value is the percent of parameters with sensitivity values less than544

or equal to the parameter’s.545

Figure 2: Results of 10 replicate simulations for the four management scenarios546

considered in the Phase 3 analysis of inSTREAM, using standard parameter values.547

Figure 3: Expected trout biomass Es under the four alternative management scenar-548

ios of the Phase 3 analysis of inSTREAM, calculated over one to 15 LHS blocks.549

The X axis is the number of blocks executed; the Y axis is the value of Es calcu-550

lated over those blocks. After five blocks were executed, additional blocks had little551

effect on expected biomass.552
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