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Abstract. In this paper we propose a preliminary reference model for the re-
quirements specification of agent-based simulation platforms. We give the fol-
lowing contributions: (i) aid the identification of general principles to develop
platforms; (ii) advance the analysis and prospection of technical-operational and
high-level requirements; (iii) promote the identification of shared requirements,
addressing them to the development of an integrated work. We present our ref-
erence model and make a comparative analysis between three well-known plat-
forms, resulting in an unambiguous and schematic characterisation of computa-
tional systems for agent-based simulation.

1   Introduction

Computational platforms and test-beds are becoming increasingly important in Multi-
agent Systems (MAS). A first goal of these systems is to release the researchers from
low-level technical-operational issues, allowing the researcher to concentrate his/her
efforts on the relevant domain application logic. In the area of Multiagent-Based
Simulation (MABS) (see [22]), computational platforms are important methodological
tools that aid the researcher in the processes of modelling and development of simula-
tion programs. They are especially valuable to conciliate different interdisciplinary
perspectives, which in MABS typically involve researchers from various scientific
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areas, such as social psychology, artificial intelligence, computer engineering, artifi-
cial life, social biology, sociology and economics. The interdisciplinary character of
MABS is an important challenge faced by all researchers in this discipline, while
demanding a difficult interlacement of different methodologies, terminologies and
points of view. To help with this process of integration, simulation platforms that
support educational, industrial and scientific research objectives are in increasing
demand.

Meanwhile, at the present maturing stage of the discipline, the requirements analy-
sis of simulation platforms plays a fundamental role, since there is not yet a consensus
with respect to the specification of services and its standards of behaviour. It is im-
portant to include this subject in the MABS agenda because:

1. The process of requirements analysis promotes a deeper discussion of many re-
search topics in the area, such as the problem of observation of emergent phenom-
ena, verification and validation of models. If such topics and associated solutions
are not well defined than that will become evident during the design of both the
general structure and the global behaviour of platforms, helping the researchers to
redirect their works. Conversely, if they are already well defined, requirements
analysis will bring new dimensions to accepted solutions and further integration
with other requirements.

2. The process of requirements analysis identifies shared requirements of many proj-
ects, addressing them to the development of an integrated work rather than individ-
ual ones.

In effect, when evaluating the importance of requirements analysis in this field it is
quite odd to find very few references in the literature about this topic. This observation
becomes even more surprising since one can find a considerable number of platforms
(though very heterogeneous) available to the research community (see e.g. [3, 12, 16,
19, 20, 25]). The extensive availability of domain specific and general-purpose plat-
forms does not necessarily facilitate the work of researchers in the field. The diversity
of functions and diffusion of ends can bring benefits, but also disadvantages in the
absence of reference models that help the researcher to systematize his/her choices
and needs. Presently, a clear and systematised reference model is in need, in order to
stimulate the integration of different works and materialize new prospects for re-
quirements related to common problems in the field, such as the observation and ma-
nipulation of emergent phenomena.

Aiming to assist on the construction of a general framework that characterizes an
ideal type of platform, the SimCog project [23] aims at two independent and cross-
fertilizable goals. The first goal is to define a reference model for the requirements
specification of an ideal type MABS platform. The second goal is the specification,
design and implementation of a platform complying with a subset of those require-
ments, with special focus on the simulation of cognitive agents. With regard to the
first goal a set of functional and non-functional requirements guiding the specification
of MABS platforms may be found in [17]. Such specification will be further validated
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and specialized based on two independent approaches: (i) by making a comparative
analysis between requirements of different platforms that are presently available to the
research community; (ii) by prospecting and exploring requirements with researchers
in the field1. In this work we report our results with respect to the first approach, the
comparative analysis.

This paper is structured as follows. In section 2 we will present a set of require-
ments that seem to characterize both the general structure and global behaviour of
MABS platforms. In section 3 we will evaluate the adequacy of the reference model
with a comparative analysis between requirements of three well-known platforms
(CORMAS, Swarm and MadKit). The comparative analysis will allow us to trace:
(i) the set of common requirements that characterize all platforms; (ii) the set of re-
quirements that do not characterize any platform, bringing new dimensions to the
prospection of requirements in the SimCog reference model. Finally, in section 4, we
draw some conclusions and suggest some general principles that should be considered
in the design of MABS platforms.

2   Requirements Analysis of MABS Platforms

Currently, there are a large number of computational systems in MABS. While ana-
lysing such systems it is possible to detect several technologies, but among this diver-
sity there are certain groups of requirements that characterize different kinds of tech-
nologies. Such groups of requirements will be called facilities, borrowing the term
from [9]. We identify four facilities that can be found in these computational systems:
technological, domain, development and analysis. In this work, computational systems
that present at some degree of development these four facilities, will be called MABS
platforms.

Meanwhile, there are a number of requirements that are not so well systematized
and developed. Most of them focus on the exploration of unexpected outputs or emer-
gent structures that should desirably play causal effects in the evolution of simulation
results. These requirements are important to balance the subjective role of observing
and validating unexpected results with the objective role of verifying such results. We
will cluster these services in a new group called exploration facilities.

In [17] we present a requirements specification for MABS platforms. As stated by
[21], a requirement is a feature of a system or a description of something the system is
capable of doing in order to reach its objectives. Additionally, it aims to detail the
structure of a system, establishing its principles of behaviour. The requirements pre-
sented in [17] followed a top-down approach, usually adopted in requirements engi-
neering. At first the most general requirements are described and at subsequent levels
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they are made more specific. In that specification there is a description of forty seven
(47) requirements, distributed across the five facilities. The requirements were classi-
fied in two categories, typical in requirements engineering: functional and non-
functional. Functional requirements describe the behaviour and the services that the
user expects a system to provide. Non-functional requirements describe restrictions,
qualities and/or benefits associated with the system, but usually do not specify a de-
tailed account of services in the system.

In this section we present a small subset of these requirements. We restrict our
presentation to functional requirements. The selection was guided with the aim of
identifying those that (i) seem to compose a basic structure of MABS platforms;
(ii) are common to, or that better differentiate, current existing platforms, and (iii) are
not present in any platform that we know, at least in a formal way. In this presentation
the following points are considered:

1. A brief description of each requirement and some associated activities in both a
precise and unambiguous way. This approach is important in MABS due to its in-
terdisciplinary character; for instance the term "domain" must be interpreted in the
same way by a Psychologist, an Anthropologist, an Engineer, and so on;

2. Each functional requirement has a name. In order to connect requirements with
UML use cases [2], each name is an active phrase, for instance “Launch Agents”.

In the rest of this section we will describe requirements clustered around the fore-
said facilities. In section 3 we will use these requirements to guide the comparative
analysis.

2.1   Technological Facilities

Technological facilities encompass services that (i) intermediate the platform with
both the operational system and the network services; (ii) provide services to support
controlled simulation worlds.

A. Manage Scheduling Techniques: The platform should support controlled simula-
tions and allow repeatability. To this end it should provide (i) libraries including at
least one commonly used scheduling technique, like discrete-time or event-based
simulation; (ii) mechanisms to cluster agents in groups and apply different scheduling
techniques to each group.

2.2   Domain Facilities

According to [1], the environment of a problem can be represented by a collection of
objects and agents. In our sense, a domain is defined by the environment and causal
knowledge of how those objects and agents interact with one another. Domain facili-
ties embrace two sub-types of requirements:
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- The first type deals with requirements that have a considerable importance in the
modelling and implementation of domains. This importance is assessed by consid-
ering how the absence of requirements may hamper, or even inhibit, the modelling
and implementation of domains. This is the case of §2.2.A and §2.2.C.

- The second type deals with requirements whose technological and logical function-
alities must be modelled in a personalized way according to the relevant domain.
They usually demand further implementation work. This is the case of §2.2.B.

A. Launch Agents: The platform should provide agent templates related with differ-
ent manners to launch agents like threads, applets and objects. For instance, platforms
that do not provide multi-threaded agents may hamper the modelling and simulation of
distributed network environments.

B. Manage Intentional Failures: From a technical-operational point of view, there
are two classes of intentional failures that can be manipulated in a simulation (see
[11]). The first class, called operational failures, works with disturbances in the tech-
nical-operational infrastructure (corrupted messages, server failures, etc.). The second,
called logical failures, manipulate patterns of behaviour that can be viewed as dys-
functional exceptions in the simulated system. Operational failures can be used to
build specific scenarios and serve as the base to build more general logical failures.
Logical failures are strongly domain dependent, and the user may have to engage in
further implementation work in order to utilize them. The platform should offer:
(i) libraries to manipulate basic operational failures; (ii) mechanisms to store and
search templates of logical failures created by users.

C. Integrate Controlled and Non-Controlled Environments: Typically the simula-
tion environment must be totally controlled, every event in the simulation world must
be performed under the control of the simulator. These situations characterize what we
call controlled environments. Nevertheless, there are cases where the agents can (or
must) perform actions outside the controlled environment, in real environments. This
integration can occur in two ways. In a first scenario an agent could use the platform
environment to perform some of its actions, while performing others under real condi-
tions. In a second scenario, an agent could be decoupled from the simulator, perform
autonomously some action under real conditions, and return to the simulated environ-
ment. In both cases this integration demands a time-consuming implementation work
from the developer.

To support this functionality a platform should offer agent architectures that sepa-
rate the agent domain-dependent behaviour from the simulator design patterns. Also,
in order to keep the simulation consistent and guarantee a good level of repeatability,
when agents are running in non-controlled environments some of their events should
be notified to the simulator, which should update its local view (see [25]).
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2.3   Development Facilities

Development facilities include mechanisms and tools to construct MAS within an
agent-centered approach or organisation-centered approach (see [15]).

A. Develop Agent Architectures: The platform should provide templates of generic
agent architectures, from reactive to intentional agents.

B. Manage Messages: Agents should communicate between each other with message
passing mechanisms. The platform should also offer: (i) message models with basic
attributes and mechanisms to extend or add additional attributes; (ii) APIs and parsers
to check the correctness of agent communication languages, eventually according to
given standards, like e.g. KQML.

C. Use Organisational Abstractions: Organisational abstractions are MAS compo-
nents that explicitly structure an organisation. Roles and groups are the most common
ones. The platform should provide services that define roles in terms of, e.g., func-
tions, activities or responsibilities. It should also be possible to define their interaction
protocols (see [26]). The concept of groups is an example of an organisational ab-
straction that defines different sub-organisations according to modularity and encap-
sulation principles. The platform should support the creation and management of agent
and organisation collections, clustered around common relations.

D. Use Multiple Societies: In the real world we have the ability to create explicit
organisational structures, observe them and reason about them, like other agents, in-
stitutions or even new societies (for example, artificial agent societies). From the ob-
server’s point of view, an artificial society may be seen as an aggregate of agents and
organisations, which coexist and interact with each other through social events. This
concept of society in agent-based simulation is rarely specified as an explicit structural
and relational entity, but usually implicitly defined in formal or informal terms of
inclusiveness of agents and other organisational entities [7]. Such tendency compli-
cates the design of artificial agents that are able to observe and reason about other
societies, particularly if the environment is composed of multiple interacting social
spaces and levels of abstraction. Although some approaches have used models that
explicitly define multiple societies, the concept of society in those models is still re-
ducible to the concept of group, where agents are viewed simultaneously both as ac-
tors and non-neutral observers in a given society. Therefore the role of opaque artifi-
cial observation is not explicitly assigned to agents, being exclusively and implicitly
defined in the person of the system designer

The possibility of instantiating multiple societies in an explicit way, as explicit or-
ganisational and relational entities themselves, can be very useful in MABS. It is im-
portant, for instance, in multi-level modelling approaches (hierarchical organisations
of social spaces). Additionally, it can serve as the basic mechanism to integrate con-
trolled and non-controlled environments (see §2.2C). The platform should provide
primitives to instantiate topologies of multiple societies, and to instantiate opaque
social spaces (see §2.5C, [7]) that may be used as neutral observation windows to
other societies and social spaces.
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E. Use Ontologies: Ontologies can be used with many objectives like interoperability,
reuse, search of information and knowledge sharing and acquisition (see [24, 13]).
Ontologies can be powerful tools to assist simulation modelling. The platform should
provide: (i) a standard ontology describing its adopted concepts and their causal rela-
tionships; (ii) mechanisms to store new ontologies based on the standard ontology; (iii)
a search engine to manipulate ontologies; (iv) a browser to query the search engine
and visualize results; and (v) mechanisms to relate ontologies with implementation
components.

2.4   Analysis Facilities

The researcher’s capacity to observe and interpret simulation results can lead someone
to ask if those results are verified, validated and relevant to the observed system,
questioning if such results are only conclusions associated with a specific observer.
This kind of question is found in [4], where the author points out the need to construct
structured simulations in order to explain the emergence and "imergence" phenomena.

According to [4], there is not yet a  “...real emergence of some causal property (a
new complexity level of organisation of the domain); but simply some subjective and
unreliable global interpretation”. In [8] we show that this problem arises in MABS
because the computational model may not be complete, or even specified correctly, in
relation to the intended conceptual model specification – see figure 1. Additionally,
the conceptual model may not be complete, or even specified correctly, in relation to
the observed target system. In fact, even if the observer is able to observe certain pat-
terns in the simulation results that could, according to some possible world, affect the
intended conceptual model, the underlying observation (e.g., a law, a theorem) may
have not been specified in the computational model, bringing the observed result to the
realm of epiphenomenalism with no causal power on the computational model.

Nevertheless, it is possible to specify requirements that can help the researcher to
observe objective simulation results. In [8] we view agent-based computational mod-
els as a triple composed by (i) a set of Agentified Entities (AE); (ii) a set of properties
observed over each one of those AEs; and (iii) a set of interaction algorithms. Agenti-
fied entities may be (i) atomic entities representing an observed feature, agent or or-
ganisation in the target; or (ii) aggregates specified with interaction algorithms that
manipulate atomic or other aggregate entities according to properties observed over
those entities. The former are called micro-AEs and the latter are called macro-AEs.
Macro AEs may differ in order of level according to different aggregation levels. The
AEs interact with each other through primitives that define the set of behavioural
events specified in the model (e.g. message-passing, perception mechanics). Require-
ments related to analysis should specify the means to observe behavioural events and
the internal state of AEs during the simulation. Furthermore they should specify the
means to define windows of observation that can be cross analysed, like the effects
produced by some micro-AE’s behavioural event in the internal state of some macro-
AE (and vice versa).
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Fig. 1. Conceptual and computational models. Static verification and validation techniques are
concerned with the analysis and checking of system representations such as specification docu-
ments and the program source code. Dynamic testing exercises the program using (real or ex-
perimental) data, and the values obtained are used to test if the computer program behaves as
expected by the conceptual model (verification) or as observed in the target (validation) – see
[8].

Figure 2 acknowledges the information processing character of computational
models, and illustrates lines of information flow which can be observed at different
levels of aggregation. The figure emphasizes the effect of macro-AEs on micro-AEs
(or lower order macro AEs), and vice versa. Continuous lines denote flow of informa-
tion caused by invocation of behavioural events, where each AE acts as an information
transformation function. The symbol “x” denotes observation of behavioural events or
internal states of AEs. Dotted lines denote control activity exercised by the simulator.

Fig. 2. Points of observation and intervention on behavioural and cognitive events.

A. Observe Behavioural Events: Behavioural events are events that can be observed
by an external observer (e.g., message passing, creation/destruction of agents, data
base access). The platform should provide mechanisms to select specific windows to
observe behavioural events. Observation windows for behavioural events are given in
figure 2 by points (1), (2), (3) and (4). Points (1) and (2) observe whole sets of behav-
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ioural events issued by AEs associated with a same macro-AE. Points (3) and (4) refer
to events associated with a single AE.

B. Observe Cognitive Events: Cognitive events are events in the agents’ internal
architectures. The observation of such events may be counter-intuitive according to
the usual agent paradigm, but indispensable to analyse structured simulations. For
example, it may be useful to analyse the effect of some behavioural event in the re-
cipient agent's mental states; or if the effect perceived by the agent who issues the
event is in fact objective according to the simulation designer-observer’s perspective.

The platform should offer mechanisms to control the agents' internal mechanisms,
in order to trigger specific observation methods. In figure 2 point (6) denotes the ob-
servation of whole sets of AEs associated with a same macro-AE. Point (5) denotes
the observation of single AEs. In order to provide structured observation of cognitive
events, the platform should comply with another requirement, called cognitive reflec-
tivity (see §2.5D).

C. Provide Data Analysis: In a simulation the amount of output data is huge and
graphical analysis at run time cannot capture all aspects of the simulation logic. This
requirement should define technical indicators and decision support (e.g., graphical
and statistical packages) to work in more depth with generated data.

2.5   Exploration Facilities

Exploration facilities emphasise the human-computer interactive character of simula-
tions with respect to the exploration of different results and emerging qualitative con-
cepts. This is important because most classic simulation programs and contemporane-
ous models of agent-oriented software engineering (see [5]) are not concerned with the
exploration of emergent, non-anticipated, structures. While most classic software
processes concentrate on the analysis and exploration of system requirements and
intended behaviours, the MABS software process is also concerned with exploration
of results. The interactive exploration of different conditions, such as different se-
quences of method invocation, mental states or assignment of variables, is thus a cru-
cial issue. The exploration can be facilitated if those conditions are allowed to change
interactively, during the simulation, in-between simulation steps.

A. Intervene in Behavioural Events: Behavioural events are events that can be ob-
served by an external observer. The platform should offer mechanisms to select spe-
cific points to intervene in behavioural events. The intervention should permit the
suppression, modification or creation of behavioural events. For instance, it may be
useful to modify the content of behavioural events (e.g., the intended recipient agent in
a message), or even to suppress its arrival to the intended recipient. These experiments
give the means to analyse functional effects in the simulation independently from the
agents’ internal representations that originate other or those same events. In figure 2,
points (1) and (2) refer to intervention in sets of behavioural events issued by AEs
associated with a same macro-AE. Points (3) and (4) denote intervention in behav-
ioural events issued by a single AE.
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B. Intervene in Cognitive Events: The platform should offer mechanisms to inter-
vene in the agents’ internal mechanisms, for instance modify the values of program
variables, order of method invocation and the agents’ beliefs. This may alter the order
of invocation and the nature of behavioural events. Point (6) denotes the intervention
in AEs associated with a same macro AE, and point (5) in a single AE. In order to
provide structured interventions the platform should comply with requirement §2.5D,
called cognitive reflectivity.

C. Manage Social Opacity: The problematic of social opacity analyses the organisa-
tional conditions under which the control of cognitive information transfer between
different social spaces at the same level of abstraction is possible [7], for instance
between different multiple societies (see §2.3D). Social opacity is therefore related to
organisational borders.

The platform should provide the means to instantiate different topologies of opaque
social spaces in a dynamic way. This is useful to simulate agents that have the ability
to instantiate and observe given models of other artificial agents and societies, allow-
ing the agents to reason autonomously about the heterogeneity of different models of
societies at various levels of observation. Nevertheless, while the observed agents and
societies must be visible to the observer agent, the observer agent and societies must
be opaque to the observed agents. The platform should provide organisational ingredi-
ents and services to instantiate multiple societies and opaque social spaces.

D. Provide Models of Cognitive Reflectivity: Cognitive reflectivity refers to the
identification of cognitive structures and internal procedures of agents at run time. The
templates of agent architectures (see §2.3A) should provide adequate models of cog-
nitive reflectivity, allowing the user or other system agents to observe and intervene in
the simulated agents’ cognitive events. Thus, different models of cognitive reflectivity
should be provided according to different generic agent architectures.

3   Comparative Analysis of MABS Platforms

We are now in conditions to present the platforms that will be subject to the compara-
tive analysis: CORMAS, Swarm and MadKit. The main purpose of CORMAS and
Swarm is to simulate agent-based models of social and biological targets. CORMAS is
a domain dependent platform in the area of renewable natural resources. Swarm is a
general-purpose platform to simulate complex adaptative systems. MadKit is an or-
ganisation-centered platform based on MAS organisations. It is a general-purpose
simulation platform, although more oriented to MAS engineering.
The Common-pool Resources and Multi-Agent Systems (CORMAS) platform is being
developed by the Centre de Coopération Internationale en Recherche Agronomique
pour le Dévelopment (CIRAD), France. The platform supports interactions between
individuals and groups sharing renewable natural resources (see [3, 6]). CORMAS
works with three types of entities: spatial, passive and social. Spatial entities define a
topological support for simulations. They hold natural resources and arbitrate their
allocation according to pre-defined protocols based on a metaphor of physical harvest.
Passive entities are subdivided in passive objects and messages; and social entities are
agents.



Requirements Analysis of Agent-Based Simulation Platforms         135

Table 3.1.  Comparative outline of MABS platforms.

CORMAS MadKit Swarm
Technological Facilities

Manage Scheduling
Techniques

Adopts discrete time
simulation

The couple Scheduler-
Activator define and
manage personalized

scheduling  techniques

Adopts event-based
simulation

Domain Facilities

Launch Agents
Agents can be

launched as objects

Agents can be launched
as objects, threads or

applets

Agents can be
launched as objects

or threads
Manage Intentional

Failures
Not available Not available Not available

Integrate Controlled
and Non-Controlled

Environments
Not available Not available Not available

Development Facilities
Develop Agent
Architectures

Flat architecture Flat architecture Flat architecture

Manage Messages
Synchronous and

asynchronous
modes

Synchronous and asyn-
chronous modes

Synchronous mode

Use Organisational
Abstractions

Does not work with
roles. It works with
agents aggregations,
through the Group

class

There are many-to-
many relation among

agents and roles. Each
group has its inner

characteristics

Does not work with
roles and groups

Use Multiple
Societies

Not available

Groups do not quite
resemble the concept of

societies, but can be
made alike

Multiple societies are
swarms, but must be
allocated in hierar-

chical levels
Use Ontologies Not available Not available Not available

Analysis Facilities
Observe Behavioural

Events
Not formally avail-

able
Hook mechanisms and

system agents
Not formally avail-

able

Observe Cognitive
Events

Designer imple-
ments methods in

SmallTalk

Watcher agents and
Probe class

Observer agents and
probe interface

Provide Data
 Analysis

Provides a rich set
of tools

Not available
Libraries like sim-
tools and random

The Multi-Agent Development Kit (MadKit) platform is being developed by
Jacques Ferber and Olivier Gutknecht of the Laboratoire d’Informatique, Robotique et
Micro-Electronique of Montpellier (LIRMM), France. MadKit is based on the 3-tupla
Agent-Group-Role (AGR). The platform adopts the principle of agentification of
services where all services are modelled using the AGR concepts, except for the serv-
ices provided by the micro-kernel. Services are defined through roles and delegated to
agents allocated in groups (see [10, 16]).
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In the Santa Fe Institute, U.S.A., Chris Langton initiated the Swarm project in
1994. Swarm is a multi-agent platform to simulate complex adaptive systems. The
main component that organizes agents is a swarm, a collection of agents with a sched-
ule of agent activities. Agents interact with each other through discrete events (see
[14,19]).

In Table 3.1 we present a comparative overview of CORMAS, MadKit and Swarm.
Exploration facilities were not considered since none of the platforms meets those
requirements, at least in a formal and structured way. We will present some general
principles to guide the development of exploration facilities in section 4.

3.1   Technological Facilities

In general, we found that requirements related with technological facilities are well
structured in all platforms.

A. Manage Scheduling Techniques: CORMAS works with discrete time simulation.
As stated by [3] this technique was chosen due to its simplicity. Swarm works with
event-based simulation. A swarm is composed by a collection of agents with a sched-
ule of events over those agents. Each event is an action that an agent can perform (see
[14,19]). MadKit does not define a priori any type of scheduling technique. There are
two classes related with scheduling in MadKit. The class Activator defines a basic
scheduling policy and relates this policy to a set of agents. According to [18], the
specialization of the class Activator permits the customisation of different schedul-
ing techniques for different sets of agents. The class Scheduler defines the agents
who are responsible for the integration and consistency of these different techniques.

3.2 Domain Facilities

The platforms do not provide a very rich set of domain facilities. This is not very
strange since all the platforms are relatively recent. One can expect an improvement
on this class of requirements with the use and development of new releases.

A. Launch Agents: Depending on the simulation domain it may be adequate to
launch agents as a thread, or as an applet, or as an object. This requirement, deter-
mines, for instance, if the platform allows distributed simulation (or easy evolution
towards that goal). CORMAS uses a single thread of control in a simulation and its
agents are SmallTalk objects. This feature hampers distribution of agents. In MadKit
agents can be launched as objects, threads or applets. In Swarm agents can be instanti-
ated as objects in their own threads, allowing the modelling of distributed simulations.

B. Manage Intentional Failures: This requirement is not available in any platform.

C. Integrate Controlled and Non-Controlled Environments: This requirement is
not available in any platform.
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3.3 Development Facilities

Requirements related to development facilities are well structured in MadKit, since
the platform is based on the Aalaadim organisational model [10]. Swarm also adopted
an organisation-centered approach, well adapted to model biological systems, but in
essence Swarm serves the purpose of agent-centered models. In Swarm, agents can be
composed of other swarms in a nested composition, generating organisational struc-
tures in hierarchical levels of access and control. CORMAS adopted an agent-centered
approach, and its services attend the needs of such modelling.

A. Develop Agent Architectures: CORMAS does not impose restrictions on the
agents’ internal architectures and the user is fully responsible for such implementation.
In MadKit agents are defined as active communicating entities that play roles within
groups. Although MadKit does not define a priori the agents’ internal architectures, it
provides templates to help the modelling of reactive and cognitive agents. An agent in
Swarm is an entity that is able to generate events that affect other agents and himself.
Swarm does not define a priori the agents’ internal architectures, but provides libraries
of agent templates. For instance, the ga and neuro libraries provide models for ge-
netic algorithms and neural networks, respectively.

B. Manage Messages: CORMAS works with message passing and the user can define
their own communication language. The class Msg defines a basic syntax with the
attributes: sender, receiver and symbol [6]. Distributed communication is not
supported in the current version of CORMAS. Both MadKit and Swarm allow local
and distributed communication, but in different levels of functionality. Communica-
tion in MadKit occurs through asynchronous message passing. The users can define
their own agent communication language, and the platform provides various codifica-
tions, such as StringMessage, XMLMessage and ActMessage. A MadKit micro
kernel handles local message passing between agents. The exchange of messages
between different micro-kernels is also possible. In Swarm, agent communication is
always synchronous and bounded inside each swarm. Different swarms can run in
different machines and processors, but agents located in different swarms cannot
communicate with each other. Like CORMAS and MadKit, the user can define their
own communication language.

C. Use Organisational Abstractions: CORMAS does not adopt the concept of role.
This is understandable since its domain-dependent character does not emphasise the
work with cognitive agents and organisation-centered approaches. This also applies to
Swarm, since the platform was initially developed according to artificial life princi-
ples. A role in MadKit is an abstract representation of an agent function, service or
identification within a group. Several agents can play a same role, and a same agent
can play several roles. In CORMAS the concept of group represents a composite so-
cial entity; entities in different groups can interact with entities in other groups, so as
to simulate interactions between different scales and organisational levels. The con-
cept of group is implemented through the class Group and its subclasses (see [6]). In
MadKit groups are atomic sets of agent aggregation. Each group has its own inner
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characteristics, like communication language, ontology, coordination techniques [16].
In Swarm the concept of group is not explicitly defined. The underlying concept of
swarm, as a collection of agents, does not quite resemble the concept of group, since
swarms in different hierarchical levels are opaque to each other.

D. Use Multiple Societies:  The platform CORMAS runs with a single kernel and
manages a single society. Considering that communication between different simula-
tions in different kernels is not possible, CORMAS does not work with multiple so-
cieties. Conversely, MadKit and Swarm can deal with multiple societies, although in a
limited way. In Swarm, each swarm may be viewed as a single society, but the con-
cept of swarm cannot be decoupled from the concept of agent. It is possible to define
different swarms allocated in hierarchical levels. However, swarms in higher hierar-
chical levels are necessarily opaque to swarms in lower levels.  A parent swarm can
launch and observe agents in swarms of lower levels, and swarms in the same level
interact implicitly if they share a same parent swarm. However, a same agent cannot
move between different swarms. Since swarms in the same nested level cannot ex-
plicitly interact, topologies of multiple societies are necessarily hierarchical. In Mad-
Kit the concept of group does not quite resemble the concept of society. This is be-
cause the concept of group is created with specific inner organisational characteristics,
like the roles an agent is allowed to play or communication links between agents. It is
possible to build topologies of multiple societies with groups, but the platform does
not provide explicit mechanisms to control levels of observation and visibility between
multiple societies (see §2.5.C).

E. Manage Ontologies: This requirement is not available in any platform.

3.4 Analysis Facilities

In CORMAS and Swarm the separation between observation of behavioural and cog-
nitive events is not formally structured, there is not a formal distinction between what
is objectively observable in the external environment and what is subjectively repre-
sented in the agents’ mind. In MadKit this separation is not entirely structured, but
seems to be more flexible than in CORMAS and Swarm, partly due to its organisa-
tion-centered approach.

A. Observe Behavioural Events: In CORMAS the designer needs to implement
methods in SmallTalk to operate the observation of behavioural events, and provides
sophisticated tools to observe such events. Swarm decouples the observation actions
from execution actions, working with a two level hierarchical architecture. In the first
level occurs the observation of the simulation (the Observer Swarm). In the second
level occurs the execution of the simulation (the Model Swarm). Probes specified in
the Observer Swarm can gather events occurring in the Model Swarm, but the notion
of behavioural event is not formally represented in the platform; the developer must
implement this kind of observation in order to track such events. MadKit provides two
ways for observing behavioural events: (i) the hook mechanisms; and (ii) agentified
services managed, for instance, by the OrganisationTrace and MessageTrace
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agents. Hook mechanisms are generic subscribe-and-publish schemes that keep the
subscriber agent informed about the invocation of kernel operations. The role of Mes-
sageTrace is to intercept calls of sendMessage() at the micro-kernel. The agent
OrganizationalTrace traces all method invocations related to organisational ab-
stractions (e.g. jointGroup(), requestRole(), see [16]).

B. Observe Cognitive Events: All platforms provide services to observe internal
events. However, such services do not explicitly comply with models of cognitive
reflectivity. In CORMAS the designer needs to implement methods in SmallTalk in
order to observe the entities’ internal attributes. In Swarm, this requirement is imple-
mented through the interface probe and the Observer agents. This mechanism gives
access to the agents' internal methods and variables at run time. The MadKit simula-
tion engine, called synchronous engine, observes cognitive events through the
Watcher agents and the Probe class. The Watcher agents are in charge of managing
a list of Probes.

C. Provide Data Analysis: In CORMAS and Swarm there is a reasonable number of
tools that fulfil this requirement. Meanwhile, in the current version of MadKit this
requirement is not fulfilled. CORMAS allows the design of graphical charts with time-
steps as the x-values and values returned by methods as the y-values. Additionally,
two levels of data-recording are available. The fist level tracks information from indi-
vidual agents and the second from the agency. Swarm offers the simtools library to
aid the process of data analysis, such as batch swarms that store information in files,
generation of graphics and histograms. It also provides a very complete library to
manage random number generators.

4 Conclusions

The requirement analysis that we have presented in this paper is a useful reference to
define development principles for agent-based simulation platforms. The comparative
analysis of CORMAS, MadKit and Swarm validated the requirements specification,
which allowed us to characterize both the general structure and global behaviour of
MABS platforms. Additionally, it was able to show that there is a reasonable consen-
sus in regard to technological, domain, development and analysis facilities. Of course,
some requirements are more developed in a platform than in others, but in general all
platforms satisfied most requirements.

It is important to point out that in CORMAS and Swarm the distinction between
behavioural and cognitive events is not completely and formally structured. In MadKit
the observation of behavioural events is explicit, but the observation of cognitive
events is not structured around models of cognitive reflectivity.

In our opinion, these limitations reflect a tendency in MABS to: (i) delegate in the
designer the activities associated with structured data gathering; (ii) overlook the im-
portance of integrating both behavioural and cognitive information to describe emer-
gent phenomena. Indeed, none of these platforms fulfilled all requirements associated
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with exploration facilities (at least in a formal way), which reinforces our observa-
tions. Exploration facilities concern the active exploration of different results and
qualitative concepts, which is the effective raison d’être of agent-based simulation.
Such requirements are useful sources to indicate general principles that should be
provided in the next generation of multiagent-based simulation platforms:

- Availability of observation and intervention mechanisms, for both behavioural and
cognitive events, according to generic models of agent architectures and cognitive
reflectivity; flexible management of observation and intervention windows, with re-
spect to both individual and aggregate events;

- Availability of organisational models that should be able to manage topologies of
multiple societies in a dynamic way. These models should be able to provide:
(i) agentification of observation and intervention activities; (ii) agent primitives to
launch different models of societies; (iii) dynamic creation of topologies of opaque
and non-opaque observation spaces, which can be autonomously created by ob-
server agents. This means that the topology of multiple societies in the simulation
world can assume an emerging autonomous character from the human designer, as
well as its different emergent points for opaque observation of social spaces;

- Availability of different ontologies to assist knowledge sharing, reuse,
interoperability, simulation modelling and establishment of ontological commit-
ments between simulation components.
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