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Five software platforms for scientific agent-based models (ABMs) were reviewed by implementing
example models in each. NetLogo is the highest-level platform, providing a simple yet powerful pro-
gramming language, built-in graphical interfaces, and comprehensive documentation. It is designed
primarily for ABMs of mobile individuals with local interactions in a grid space, but not necessarily
clumsy for others. NetLogo is highly recommended, even for prototyping complex models. MASON,
Repast, and Swarm are “framework and library” platforms, providing a conceptual framework for
organizing and designing ABMs and corresponding software libraries. MASON is least mature and
designed with execution speed a high priority. The Objective-C version of Swarm is the most ma-
ture library platform and is stable and well organized. Objective-C seems more natural than Java for
ABMs but weak error-handling and the lack of developer tools are drawbacks. Java Swarm allows
Swarm’s Objective-C libraries to be called from Java; it does not seem to combine the advantages of
the two languages well. Repast provides Swarm-like functions in a Java library and is a good choice
for many, but parts of its organization and design could be improved. A rough comparison of execu-
tion speed found MASON and Repast usually fastest (MASON 1–35% faster than Repast), Swarm
(including Objective-C) fastest for simple models but slowest for complex ones, and NetLogo interme-
diate. Recommendations include completing the documentation (for all platforms except NetLogo),
strengthening conceptual frameworks, providing better tools for statistical output and automating sim-
ulation experiments, simplifying common tasks, and researching technologies for understanding how
simulation results arise.

Keywords: Agent-based modeling, individual-based modeling, software platforms

1. Introduction and Objectives

The use of agent-based simulation models (ABMs)—or
individual-based simulation models (IBMs)—for research
and management is growing rapidly in a number of fields.
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For example, a steady, sharp increase in the number of ecol-
ogy publications using IBMs started in about 1990 [1]. This
growth is driven primarily by the ability of these models
to address problems that conventional system-level mod-
els cannot. However, it has been been accelerated by the
evolution of theory [2] and strategies [3] for performing
science with ABMs and by the growing number and qual-
ity of software platforms for agent-based simulation.
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Software development remains an obstacle to the use
of ABMs for many researchers, however. This problem
results in large part from an absence of training in soft-
ware skills in the education of researchers in many fields
that useABMs (e.g., biology, ecology, economics, political
science, sociology), and the computer skill that is taught—
programming—is not the only one, or even the most im-
portant one, needed for developing ABMs [4, 5].

Most of the commonly used ABM platforms fol-
low the “framework and library” paradigm, providing a
framework—a set of standard concepts for designing and
describing ABMs—along with a library of software im-
plementing the framework and providing simulation tools.
The first of these was Swarm [4] (http://www.swarm.org),
the libraries of which were written in Objective-C. Java
Swarm (http://www.swarm.org) is a set of simple Java
classes that allow use of Swarm’s Objective-C library from
Java.1 Repast (http://repast.sourceforge.net) was started
as a Java implementation of Swarm but has diverged
significantly from Swarm. Most recently, MASON [6]
(http://cs.gmu.edu/∼eclab/projects/mason/) is being de-
veloped as a new Java platform.

These platforms have succeeded to a large extent be-
cause they provide standardized software designs and tools
without limiting the type or complexity of models they can
implement, but they also have well-known limitations. A
recent review of Java Swarm and Repast (along with two
less-used platforms) ranked them numerically according to
well-defined criteria [7]. Criteria were evaluated from doc-
umentation and other information about each platform. The
review indicated that important weaknesses include the
following: difficulty of use; insufficient tools for building
models, especially tools for representing space; insufficient
tools for executing and observing simulation experiments;
and a lack of tools for documenting and communicating
software.

The Logo family of platforms has followed quite a dif-
ferent evolution. Their primary purpose has been to pro-
vide a high-level platform that allows students down to the
elementary level to build and learn from simple ABMs.
However, NetLogo (http://ccl.northwestern.edu/netlogo/)
now contains many sophisticated capabilities (behaviors,
agent lists, graphical interfaces, etc.) and is quite likely the
most widely used platform for ABMs. NetLogo includes
its own programming language that is simpler to use than
Java or Objective-C, an animation display automatically
linked to the program, and optional graphical controls and
charts. Perhaps because NetLogo is clearly designed for
one type of model (Section 3.1) and uses a simplified lan-
guage, scientists tend to assume it is too limited for serious
ABMs. We originally intended to exclude NetLogo as too
limited for full treatment in this paper, but found we could
implement all our test models (Section 2.1) in NetLogo,

1. We refer to “Objective-C Swarm” and “Java Swarm” for points
specific to one of these two implementations, and to “Swarm” for points
applicable to both.

with far less effort than for other platforms. A number of
serious scientific models have been implemented in Logo
platforms; see, for example,An [8]. Of the platforms we re-
view, only NetLogo does not distribute its source code, but
its developers have assured us that they attempt to accom-
modate the need for scientific users to understand exactly
how its methods work.

This paper has two objectives. The first is to review and
compare platforms now widely used for ABMs: MASON,
NetLogo, Repast, and the Java and Objective-C versions of
Swarm. The second is to identify development priorities:
what general directions in the future development of ABM
platforms seem likely to make them more productive?

This review is intentionally from the perspective of the
scientist lacking software development expertise but wish-
ing to use ABMs for research. In particular, we have in
mind “pattern-oriented” theoretical research [2, 3]: using
ABMs of a real system to test and contrast alternative model
versions (e.g., alternative rules for individual behavior) by
how well they reproduce a variety of patterns observed in
the real system. This type of research typically requires
moderate to high complexity in the behavior of individu-
als and in their environment, but often not massive num-
bers of agents, extremely long simulations, or behaviors
that evolve during the simulation. Therefore, our focus is
primarily on the “ease of use” issue: how easy is it to im-
plementABMs and conduct experiments on them? We also
briefly address execution speed: while execution speed is
not a major concern for many projects (compared to the
time for software development and testing), it is a con-
cern for projects using extremely complex simulations or
using many model runs to compare alternative model ver-
sions, for example, for parametrization or theory develop-
ment [3].

To provide a basis for the review, (i) we implemented
a series of example models in each platform, and (ii) we
gained experience teaching these platforms to students and
scientists in mathematics and ecology. At the start of the
project we had little experience with any of the platforms
except Objective-C Swarm.2 The review is not intended to
be quantitative; many of the issues we address would be dif-
ficult to represent via numerical scores. Readers should be
aware that by focusing on platforms already in widespread
use, we ignore the many less well-known (and, likely, more
innovative) platforms that could be good choices for some
projects.

The platforms we examine continue to be developed and
revised. In this paper we consider only the public releases
that were current in September 2005: MASON version 10,
Repast 3.1, Swarm 2.2, and NetLogo 2.1. Some of our

2. Steven Lytinen teaches and uses Java; Stephen Jackson is an expe-
rienced programmer of Objective-C Swarm; Steven Railsback is an ex-
perienced designer and user, but not programmer, of Objective-C Swarm.
Steven Railsback is also on the board of directors of Swarm Develop-
ment Group, which maintains Swarm. Nothing in this paper is intended
to represent the opinions, policies, or interests of Swarm Development
Group.
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results are already out of date,3 so we focus mainly on
persistent design issues instead of bugs and quirks of the
current versions.

2. Methods

2.1 Platform Comparison: Programming Experience

Our main source of information for reviewing and com-
paring the five platforms was our own experience imple-
menting a series of example models, which we call Stupid-
Model. The name StupidModel was obviously chosen for
fun but it also reinforces the recommendation that mod-
eling projects start with a “ridiculously simplified model”
[2].We designed StupidModel mainly as a teaching tool; its
simplest version can be taught to beginners in two to four
hours, using any of the platforms. (StupidModel is not re-
ally a model because it does not represent a real system or
problem.)

StupidModel is also intended as a template for real ap-
plications; it includes examples of many capabilities typ-
ically needed in the ABMs of real systems. The selec-
tion of these capabilities was based on a discussion (see
Chapter 1 of Grimm and Railsback [2]) of what consti-
tutes an IBM, a review of ecological IBMs (see Chap-
ter 6 of Grimm and Railsback [2]), and our own expe-
riences of designing and teaching ABMs. Many scien-
tific ABMs represent full “life cycles”—reproduction and
death of agents—and agents interact with their environ-
ment. Agents often have several behaviors scheduled at
different times and in different orders (e.g., actions exe-
cuted by agents in randomized order to represent concur-
rent, non-hierarchical behavior; actions executed in order
of agent size to represent hierarchy), and many models
have several distinct types of agent. Stochastic processes
are widely used, but goal-oriented decision-making is often
essential for realism. Real models do not run indefinitely
but stop when specified conditions are met (e.g., to simu-
late a specific time period for which there are input data
from the real system). Also, from the very start, model-
ers need observability tools from “probes” displaying the
state of individuals to statistical summaries of the popu-
lation. (Unfortunately, these characteristics are generally
lacking in the demonstration models distributed with the
software platforms—NetLogo being an exception.) The 16
versions of StupidModel we implemented in each platform
are summarized in Table 1; the full specifications of Stupid-
Model, and our implementations in each platform, are on
the Swarm Development Group’s agent-based modeling
site (http://www.swarm.org/wiki/Software_templates).

3. Changes since this study was conducted that we have been no-
tified of but not reviewed include: new releases of MASON with many
additions, including a variety of charts and graphs; new releases of Net-
Logo that include non-toroidal spaces and a “batch mode” to run models
without the graphical interface; a new release of Repast scheduled for late
2006; and projects underway to reimplement Swarm in the .NET/Mono
and OpenStep/GNUstep environments.

Table 1. StupidModel versions

Version Characteristics Added

1 100 agents (“bugs”) distributed randomly into a
100×100 grid space.Bugs have one action: move
to a randomly chosen neighbor cell. Bug loca-
tions are displayed graphically.

2 A second bug action: growing by a constant
amount.

3 Habitat cells that grow food; bug growth is equal
to the food they consume from their cell.

4 “Probes” letting the user see the instance vari-
ables of selected cells and bugs.

5 Parameter displays letting the user change the
value of key parameters at run time.

6 A histogram of bug sizes.
7 A stopping rule that causes execution to end

when any bug reaches a size of 1000.
8 File output of the minimum, mean, and maximum

bug sizes each time step.
9 Randomization of the order in which bugs move.

10 Size-ordering of execution order: bugs move in
descending size order.

11 Optimal movement: bugs move to the cell within
a radius of 4 that provides highest growth.

12 Mortality and reproduction: bugs have a constant
mortality probability, and reproduce when they
reach a size of 10.

13 A graph of the number of bugs.
14 Initial bug sizes drawn from a random normal dis-

tribution.
15 Cell food production rates read from an input file;

graphical display of cell food availability.
16 A second “species”: predator agents that hunt

bugs.

We implemented all versions of StupidModel in each
of the five platforms reviewed, rigidly following the same
model specification. While implementing the same spec-
ifications in each platform, we also attempted to under-
stand and follow each platform’s unique idioms and con-
ventions; these sometimes had strong effects on software
design. Even within these idioms and conventions, there
are of course many ways to program the same model, and
programming decisions made in early versions affect later
versions. We generally used approaches that seemed sim-
ple and intuitive, not (for example) attempting to optimize
speed. As we built these implementations, we noted the
advantages and disadvantages of each platform.

We also evaluated the platforms’ facilities for the types
of simulation experiment often used in conducting research
with ABMs. Simulation experiments such as sensitivity
and uncertainty analyses require multiple model runs, in-
cluding (i) “scenarios” varying inputs such as parameter
values and (ii) “replicates”, which vary only the pseudo-
random number generator seed. Simulation experiments
are facilitated by a “batch mode”, in which the model is
run without graphical interfaces to increase speed.
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2.2 Platform Comparison: Execution Speed

While we did not attempt to rigorously compare the
execution speeds of the platforms against a formal bench-
mark, we were interested in seeing which platforms were
particularly fast or slow. We timed runs of seven versions
of StupidModel over 1000 time steps. The histogram and
population graphs (added in versions 6 and 13) were dis-
abled because we could not implement them in MASON
(Section 3.3.6). We also ran version 16 in batch mode to ex-
amine the effects of screen graphics on execution speed (in
NetLogo, we turned off updating of the animation window
to approximate batch mode). Runs were timed by having
the software print the system clock time at the beginning
and end of the run; we report the mean execution time over
five replicate runs of each model version. The runs were
executed on a Pentium IV computer running the Windows
XP operating system. (In Windows, Objective-C Swarm
runs within Cygwin, a Unix-like environment; we found
the execution time to be only 2% faster when the Objective-
C models were run in Linux instead of Windows.) For Java
platforms, we timed the interpreted byte code run by the
Java Virtual Machine. NetLogo requires a mouse click to
run a model after its separate setup method; we included
the time taken by a reasonably agile middle-aged professor
to accomplish the click.

This experiment cannot be considered a rigorous or
comprehensive comparison of the execution speeds of the
ABM platforms. We were careful to implement each ver-
sion of StupidModel faithfully in each platform, but we
did not attempt to rigorously control all the factors—for
example, the numbers of method calls, system calls, or ob-
jects created—that can affect execution speed. We believe
(but did not attempt to demonstrate) that speed differences
were controlled more by the design of each platform and
its schedules, spaces, etc., than by differences in our code.
In our implementations, we used the most basic built-in
classes of each platform, as we would expect a novice user
to, with no attempt to optimize execution speed. (Often,
major speed improvements can be obtained by careful re-
design of the code; one example is to use the “sparse ma-
trix” classes in MASON and Repast instead of the standard
grid spaces for models having few objects in the space.)
The relative speeds of the platforms varied even among the
versions of StupidModel we examined, so it is clear that
our results cannot be assumed applicable to all ABMs.

2.3 Review of Development Priorities

To provide the basis for recommending platform devel-
opment priorities, we identified ABM software issues—
factors making platforms more or less productive—from
our experience implementing StupidModel and from
teaching individual-based modeling. Our experience in-
cluded teaching a short introduction to NetLogo to a con-
ference workshop; a four-hour introduction to Repast and
Java to a small group of Humboldt State University (Cali-

fornia) graduate students who had at least minimal experi-
ence developing or usingABMs implemented in other plat-
forms; and a week-long class on IBMs, Repast, and Java to
graduate students in ecology at the University of Helsinki
(Finland). In the two Repast classes, we also used Eclipse
(http://www.eclipse.org), an integrated development envi-
ronment (IDE), to reduce the time devoted to basic Java
skills.

3. Results

3.1 Platform Objectives, Philosophies, and
Terminology

An unexpected result of this project was discovering the
extent to which the design objectives and philosophies of
the platform developers differed, and the extent to which
these differences are reflected in the platform. Here we
summarize our interpretation of the objectives and philoso-
phies of the platforms. This interpretation is based mainly
on our experience with the software and documentation,
but we have also discussed these issues with the develop-
ers of each platform.

Swarm was designed as a general language and toolbox
for ABMs, intended for widespread use across scientific
domains. Swarm’s developers started by laying out a gen-
eral conceptual approach to agent-based simulation soft-
ware. Key to Swarm is the concept that the software must
both implement a model and, separately, provide a virtual
laboratory for observing and conducting experiments on
the model. Another key concept is designing a model as a
hierarchy of “swarms”, a swarm being a group of objects
and a schedule of actions that the objects execute. One
swarm can contain lower-level swarms whose schedules
are integrated into those of the higher-level swarms; simple
models have a lower-level “model swarm” within an “ob-
server swarm” that attaches observer tools to the model.
The software design philosophy appears to have been to
include software that implements Swarm’s modeling con-
cepts along with general tools likely to be useful for many
models, but not to include tools specific to any particular
domain. Swarm was designed before Java’s emergence as
a mature language. One reason for implementing Swarm in
Objective-C was that this language’s lack of strong typing
(in contrast to, for example, C++) supports the complex-
systems philosophy of lack of centralized control; for ex-
ample, a model’s schedule can tell a list of objects to exe-
cute some action without knowing what types of object are
on the list. Swarm uses its own data structures and memory
management to represent model objects; one consequence
is that Swarm fully implements the concept of “probes”:
that is, tools that allow users to monitor and control any
simulation object, no matter how protected it is, from the
graphical interface or within the code (see Section 3.3.4).

Java Swarm was designed to provide, with as little
change as possible, access to Swarm’s Objective-C li-
brary from Java. Java Swarm was motivated by a strong
demand among Swarm users for the ability to write models
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in Java, not by the objective of providing Swarm’s capa-
bilities as cleanly and efficiently as possible in Java. Java
Swarm therefore simply allows Java to pass messages to
the Objective-C library, with work-arounds to accommo-
date Java’s strong typing.

Repast development appears to have been driven by
several objectives. The initial objective was to imple-
ment Swarm, or equivalent functionality, in Java. How-
ever, Repast did not adopt all of Swarm’s design philos-
ophy and does not implement swarms. Repast was also
clearly intended to support one domain—social science—
in particular, and includes tools specific to that domain. The
additional objective of making it easier for inexperienced
users to build models has been approached in several ways
by the Repast project. These approaches include a built-
in simple model, and interfaces through which menus and
Python code can be used to begin model construction.

MASON was designed as a smaller and faster alter-
native to Repast, with a clear focus on computationally
demanding models with many agents executed over many
iterations. Design appears to have been driven largely by
the objectives of maximizing execution speed and assur-
ing complete reproducibility across hardware. The abilities
to detach and re-attach graphical interfaces and to stop a
simulation and move it among computers are considered
a priority for long simulations. MASON’s developers ap-
pear intent on including only general, not domain-specific,
tools. MASON is the least mature of these platforms, with
basic capabilities such as graphing and random number
distributions still being added.

NetLogo clearly reflects its heritage as an educational
tool, as its primary design objective is clearly ease of use.
Its programming language includes many high-level struc-
tures and primitives that greatly reduce programming ef-
fort, and extensive documentation is provided. The lan-
guage contains many but not all the control and structuring
capabilities of a standard programming language. Further,
NetLogo was clearly designed with a specific type of model
in mind: mobile agents acting concurrently on a grid space
with behavior dominated by local interactions over short
times. While models of this type are easiest to implement
in NetLogo, the platform is by no means limited to them.
NetLogo is by far the most professional platform in its
appearance and documentation.

These platforms share many concepts but their termi-
nology for similar concepts differs in sometimes confusing
ways. We assembled a list of key concepts and the terms
used for them (Table 2; there are subtle differences in con-
cepts among platforms, so the terms in each row are not
completely equivalent in meaning).

3.2 Platform Comparison: General Simulation
Issues

Here we compare how the platforms deal with several
standard issues in discrete event simulation: model struc-
ture, scheduling, and random number generation.

Model structure. Each platform has a standard model
structure which is enforced to varying extents by its code
and also established via conventions used in documentation
and example models. In Swarm, a model usually consists of
at least: (i) an “observer swarm” that provides a graphical
depiction (animation) of the model, graphs, control panels,
and parameter displays; (ii) a “model swarm” that builds
and contains the model’s agents and other objects, and con-
tains their schedule; (iii) one or more collections of agents;
and (iv) one or more space objects representing the agents’
environment. MASON uses a structure similar to Swarm’s,
although the class names are different. One usually defines
a user interface (UI) class, which is responsible for display-
ing the model as it runs, a “model” class which constitutes
the simulation model, contains the schedule, and organizes
and controls the other model objects, and agent and space
classes. Repast’s overall structure seems less well defined:
some examples use separate model classes, one with and
one without graphics, while other examples include display
objects within the single model class.

NetLogo’s high-level environment almost completely
separates the processes of implementing and displaying
a model. The user writes the software for behavior of
agents and the space’s grid cells on a “Procedures” page.
Agents are essentially subclasses of built-in “turtles” (mo-
bile agents) and “patches” (spatial cells). On a separate
“Interface” page is an automatic animation of agent lo-
cations on the space. The schedule is written in a special
procedure called “go”. Graphs and parameter controllers
can be added to the interface via graphical and menu-driven
tools, along with simple statements in the software telling
the interface when to update. Code controlling the appear-
ance of agents and cells on the animation can be added to
the procedures.

Scheduling. A primary purpose of ABM platforms is to
control which specific actions are executed when, in simu-
lated time. Models often use discrete, fixed time steps but
sometimes use “dynamic scheduling”, in which new ac-
tions can be generated as the model executes, and sched-
uled for execution at a specific future time (see, for exam-
ple, Section 5.10 of Grimm and Railsback [2]). MASON,
Repast, and Swarm provide explicit methods for schedul-
ing actions, both in fixed time steps and dynamically. Be-
cause it is designed primarily for one type of model, Net-
Logo provides fewer tools for explicit control of schedul-
ing. By default, the order in which actions are executed
is partially controlled by the order in which they appear
in the “go” procedure but NetLogo’s pseudo-concurrent
execution keeps the user from specifying or knowing the
exact sequence in which events are executed. However, the
pseudo-concurrent execution can easily be deactivated to
make NetLogo models use discrete time steps. NetLogo
does not appear to provide the ability to schedule an action
a specific future time.

Random number generation. All the platforms use
the “Mersenne twister” random number generator [9], and
optionally allow users to provide their own seed so the
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Table 2. Terminology differences among platforms

Term

Concept MASON NetLogo Repast Swarm

Object that builds and controls simulation objects Model Observer Model Model swarm
Object that builds and controls screen graphics ModelWithUI Interface (None) Observer swarm
Object that represents space and agent locations Field World Space Space
Graphical display of spatial information Portrayal View Display Display
User-opened display of an agent’s state Inspector Monitor Probe Probe display
An agent behavior or event to be executed Steppable Procedure Action Action
Queue of events executed repeatedly Schedule Forever

procedure
Schedule Schedule

sequence of pseudo-random numbers can be repeated.
Only Swarm includes a variety of alternative generators.

3.3 Platform Comparison: Programming Experience

In this section we describe the interesting characteristics
and differences among the platforms which we identified
while implementing the 16 versions (Table 1) of Stupid-
Model. We also discuss the platforms’ facilities for non-
graphics and automated experiment runs.

3.3.1 Version 1: Mobile Agents

The StupidModel agents exist in a discrete two-
dimensional grid. All of the platforms have built-in classes
to represent such a grid space. The space is also “toroidal”,
meaning that cells on one edge are assumed contiguous
to the opposite edge. Repast has a class specifically for a
toroidal space. MASON has a two-dimensional grid class
which can be used for toroidal or non-toroidal spaces, de-
pending on which of its methods are used. Swarm does
not have a toroidal space class, so code must be written to
detect if a bug is near an edge to allow for the possibility
that its motion will carry it across the edge to the other side
of the space. In NetLogo, all spaces are toroidal.

MASON, Repast, and Swarm use the same logical,
yet somewhat complex, approach to displaying agents in
space. First, the user must instantiate a screen display ob-
ject, which we refer to as an “animation window”. Sec-
ondly, the user must instantiate a separate “displayer” ob-
ject that links one or more space objects (as discussed in
the previous paragraph) to the animation window. Finally,
each object to be drawn must have a “draw” method that
specifies its coordinates, shape, and color (in MASON,
this draw method is in the “UI” class instead of the agent
class). NetLogo, in contrast, automatically draws agents on
a built-in animation window; users can customize shapes
and colors.

Only NetLogo has a built-in class to represent agents;
this class assumes the agents exist in a discrete grid space
and automatically provides variables for agent coordinates
and keeps track of which cell they are in. In the other plat-
forms, we defined a StupidBug class with instance vari-

ables for the x and y coordinates. In NetLogo, agent mo-
tion was implemented using a built-in method that moves
an agent to a location specified by X and Y coordinates. In
the other platforms, agent motion had to be implemented
using lower-level operations, which first removed the agent
from its location in the grid space, then put the agent in its
new location, and finally updated the agent’s coordinates.

We used each platform’s scheduling mechanism from
the very beginning, although version 1 of StupidModel
could have been written more simply without full use of
scheduling. Actions scheduled for each time step are (i)
each bug moving and (ii) the display updating. (The dis-
play update is scheduled explicitly so users know, when-
ever they look at and probe—see Section 3.3.4—the dis-
play, exactly where the model was in its schedule when
the display was drawn; this can be important for debug-
ging as models become more complex.) Each platform has
a built-in method for scheduling repeated execution of a
specific action for a collection of agents, but how this is
done varies among platforms. In Objective-C Swarm, the
scheduling statement simply states which object (or col-
lection of objects) is to be executed and the “selector” for
the method those objects execute. In Objective-C, a selec-
tor is a standard variable type that represents the name of a
method. Java does not include the selector variable type, so
Java Swarm uses a selector class. For example, to sched-
ule a list of bugs to execute a method called “move”, Java
Swarm requires creating a move selector object for the
bug class, then placing an action on the schedule which
utilizes this selector. The creation of a selector requires
a separate programming statement and is slightly awk-
ward. Repast has scheduling statements similar to those
of Objective-C Swarm; one simply specifies the name of
the method and the object to be scheduled for execution.
MASON’s scheduling is significantly different, in ways
that became important later when more than one action for
the same object needed to be scheduled at different times
(Section 3.3.2).

It was difficult to confirm that our scheduling specifi-
cation (bugs move, then the display updates) was met in
MASON because the display update is automatic. We were
unable to determine from the documentation exactly when
the display update is scheduled.
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Scheduling the display update was not trivial in Repast
because Repast by default executes actions in random order
each time step. We had to override this default to ensure
that the agent “move” action was always executed before
the display was updated. To do so, we created a sequential
subschedule (called an “ActionGroup” in Repast) in which
first the bugs moved, and then the display was updated. This
subschedule then was placed as the only item on the overall
schedule.

In NetLogo, actions are scheduled simply by including
them in a special procedure called “go”. In this case, the
“go” procedure includes a statement telling the bug agents
to execute their “move” procedure, then a statement telling
the display to update.

3.3.2 Version 2: Agent Growth

In version 2, a second action—grow—is added for the
bug agents. Adding a second agent action to the sched-
ule was trivial in all platforms except MASON. MASON’s
complication was a result of its scheduler’s use of a stan-
dard software design called the template method design
pattern [10]. All actions scheduled in MASON must act on
objects that implement an interface called Steppable. (In
Java, abstract classes are often written as interfaces. This is
the case with Steppable; however, in other object-oriented
languages the same design would be accomplished using
an abstract class.) This interface requires a hook method
called “step”; any object to be scheduled must have a
method called “step”, and only the step method can be
executed by the MASON scheduler. This design was used
to avoid the execution time required to look up which code
to execute when an action is specified by a selector, as in
Swarm and Repast; the MASON scheduler always knows
to execute a method named “step”.

Use of this template method design pattern makes it easy
to schedule the agents to each perform all of its actions at
once, simply by placing a sequence of method calls into
the agents’ step method. For example, if in StupidModel
we had wanted each bug to move and then grow before the
next bug acted, then we could have written “step” to call
the methods “move” and then “grow”. However, for models
requiring agents to have distinct actions scheduled sepa-
rately, this template design pattern is not convenient. Be-
cause we wanted all of our StupidBugs to move before any
of them grew, in essence we needed two “hook” methods:
one for moving and one for growing. Producing the desired
sequence of actions is therefore done by building wrap-
pers (internal classes implementing Steppable) around the
“move” and “grow” methods for our agents. This complex
programming device is certainly difficult for Java novices.

In version 2 we also programmed the bug’s color to
reflect its size, grading from white to red as the bug size
ranges from 0 to ≥10. In Repast and MASON, we found
it most straightforward to use the built-in Java Color class.
Swarm requires (and MASON and Repast allow) users to
define a “colormap”: an indexed range of colors. In the
observer swarm, we built a map of 64 colors scaling from

white to blue; in their draw method, the bugs calculate an
index between 0 and 63 from their size and use this index
to obtain the appropriate color. MASON includes a built-in
tool for creating these color gradients in its colormap.

NetLogo provides a color-scaling primitive: we only
needed to specify that a bug’s color is red, shaded by bug
size over a range of 0 to 10.

3.3.3 Version 3: Habitat Cells

In MASON, Repast, and Swarm, the easiest way to im-
plement habitat cells—for this version—was to create a
habitat cell class and put cell objects, not bugs, into the
grid space. The cells have an instance variable for the bug
they contain, if there is a bug in the cell. The bugs obtain
information about their habitat (food availability) from the
cell having the same coordinates as themselves. The dis-
play updates by sending a “draw” message to the cells,
which simply tells their bugs to draw themselves.

NetLogo makes version 3 easier in two ways. First,
the built-in grid space automatically contains habitat cells
(“patches”) and is designed to track agents and spatial re-
sources separately, so both bugs and habitat cells exist in
the same space. Secondly, agents automatically have ac-
cess to the instance variables of the cell they occupy; thus,
in StupidModel the amount of food available in a cell is
available to a bug object as though the data were one of the
bug’s instance variables.

3.3.4 Version 4: Cell and Bug Probes

“Probe” displays of an object’s variables that can be
opened from a model’s animation window are built in to
all five platforms. In MASON, Repast, and Swarm, the
displayer automatically generates probes to the objects in
its underlying space objects; the user can add code for
customizations such as which variables are included in the
probe display, which mouse button opens which type of
object (bug versus cell), and whether the probes are updated
each time step if left open as the model runs.

In MASON and Repast, variables can be probed only
if the user provides “getter” and “setter” methods. In Java
Swarm, variables can be probed only if they are declared
public. However, in Objective-C Swarm, probes have ac-
cess to all instance variables and methods of any object,
even if they are declared to be private or constant. Thus, no
additional code must be written for a probe to display all
of an object’s data. (In Objective-C Swarm, in fact, probes
can be used within the code instead of getter and setter
methods.)

Although adding probes to an animation window is rel-
atively easy in all platforms, probing both cells and bugs
required a major change in MASON, Repast, and Swarm
software. For both to be probeable, bugs and cells need sep-
arate displayer objects that put them on the animation win-
dow, and separate underlying space objects. Therefore, in
version 4 bugs exist in one grid space object (“bug space”)
and the habitat cells exist in a separate “habitat space”.
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Having two spaces in the model increased the complex-
ity of interaction among objects. Now bugs have to know
about both their own space and the habitat space, because
the amount of food in its habitat cell determines how much
the bug can grow. In addition, the bug’s grow action has
to update the habitat space: the amount of food in the cell
decreases by how much the bug has eaten.

Facilitating communication among objects in a “pure”
object-oriented language such as Java is a common diffi-
culty for novice programmers. Because Java lacks global
variables, the most common way to facilitate object-to-
object communication is to pass objects via the construc-
tor, and then to store the objects in an instance variable.
For example:

// Repast version 3
public class StupidBug {

private Object2DTorus bugSpace;
private Object2DGrid habitatSpace; ...
public StupidBug(Object2DTorus aSpace,
Object2DGrid bSpace) {

bugSpace = aSpace;
habitatSpace = bSpace;
...}

}

Instances of the “StupidBug” class can then commu-
nicate with the bug and habitat spaces via these instance
variables. Our teaching experience has been that novice
Java programmers become confused by the need to pass
objects to a constructor in order to facilitate communica-
tion between objects.

MASON provides a more understandable approach
for communication among objects. Its “hook” methods
(“step”) always take one parameter, namely the SimState
object that represents the overall model. Then, inside its
step method, an object can communicate with other ob-
jects in the model via the model’s “getter” methods: the
model object serves as a communication device by hold-
ing information needed by other objects. For example:

// MASON version 3
public class StupidBug {

// wrapper for the grow method has
been omitted for simplicity

public void grow(SimState state) {

StupidModel theModel = (StupidModel)
state;
ObjectGrid2D habitatSpace =
theModel.getHabitatSpace();
...
// Now the bug determines food
availability from habitatSpace
}

}

In this case, the bug’s grow method needs information
about food availability from the habitat space, so from the
model it obtains a local variable for the habitat space.

In NetLogo, probes to both agents and cells are built
into the animation window and require no code.

3.3.5 Version 5: Parameters and Parameter
Displays

All of the platforms have some built-in probe-like facil-
ity for displaying and altering model parameters—which
may specify initial conditions or control behavior of model
objects—at the start of a model run. Parameters are usually
treated as instance variables of the model class. In Repast,
parameters to be displayed at startup are selected simply by
listing them in a statement in the model’s “setup” method
and by providing getter and setter methods for each. MA-
SON automatically provides access to any model variables
with getter and setter methods. Swarm requires the user to
create and activate a probe display object for the model
swarm.

NetLogo allows users to control parameters before and
during a model run via graphical “slider” controls on its
interface page. To add a slider for a model parameter, the
programmer simply drags a new slider onto the interface
and uses its menu to hook the slider up to the desired model
variable. While sliders are easy to add and convenient for
exploring wide ranges of parameter values, they are less
convenient for specifying an exact parameter value.

3.3.6 Version 6: Histogram Output

Histograms are particularly useful for ABMs because
they can output the full distribution of some characteristic
over all the agents. In version 6, we added a histogram
of bug size. Repast and Swarm have built-in histogram
classes that are relatively easy to use. MASON does not
yet provide such a class.

In Java Swarm, the histogram class (and several other
graphics classes) is complicated to use because the “create-
Begin – createEnd” object creation paradigm of Objective-
C Swarm is incompatible with Java constructor methods.
To work around this incompatibility, Java Swarm requires
instantiating two separate objects in a non-intuitive process
that is not documented well.

In NetLogo, histograms are created using drag-and-
drop and a menu, on the interface page. Then, a simple
code statement specifies when the histogram is updated.

3.3.7 Version 7: Stopping the Model

Stopping when a specified condition is met is an exam-
ple facility for scientific ABMs that is often neglected in
simple demonstration models. All platforms have a sim-
ple statement by which the model’s code can stop its own
execution.
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3.3.8 Version 8: File Output

Scientific models invariably produce output for later
analysis; for ABMs, this output typically includes sum-
mary statistics on the agents. A variety of statistics is
needed to capture the variability among agents—simple
averages are not sufficient. Two platform capabilities sup-
port this need.

File output tools. Objective-C Swarm and Repast pro-
vide built-in classes to facilitate output of data to a file,
and data recording actions can be scheduled just like any
other action, so that they take place at known times. Java
Swarm and MASON do not provide file writing tools, so a
Java class for file output must be used. NetLogo provides
simple primitives for opening and writing to files, although
their ability to format and control output is limited.

Statistical calculations. Swarm has a powerful tool
for collecting summary statistics on a collection of model
objects in its “Averager” class. NetLogo also includes
primitives that provide all common statistics. Repast’s
“DataRecorder” provides only an average. MASON lacks
tools for summary statistics. NetLogo was the only plat-
form lacking a built-in variable for the number of time steps
executed, so we had to add one to label output.

3.3.9 Version 9: Randomization of Bug Movement

This version illustrates how to randomize the order
in which a collection of agents executes some scheduled
method. Randomized scheduling is often used to avoid ar-
tifacts of execution order; for example, in later versions of
StupidModel, bugs that execute their “grow” method ear-
lier have access to more food than bugs executed later. All
of the platforms provide the ability to randomize the order
of actions. MASON and Swarm make this the easiest, via
scheduling methods that pseudo-randomly shuffle the or-
der of the agents each time step. Repast does not provide a
scheduling method which randomizes the execution order
of a collection of agents; users can instead use a Repast
class to shuffle the agent list. This shuffle must also be
included in the schedule so it is repeated each time step.

NetLogo documentation does not describe exactly how
the scheduler orders execution of the agent list, and there
is no simple method to randomize execution order. How-
ever, the NetLogo documentation does provide an easily
followed example of how to combine several primitives in
a complex way to effectively randomize execution of an
agent action.

3.3.10 Version 10: Size-ordering of Bug
Movement

In contrast to randomized scheduling of an action, some
models use ordered execution to represent a hierarchy: big-
ger agents execute their actions before smaller ones so they
have access to more resources. Therefore, version 10 illus-
trates how to sort a collection of agents by some attribute
(size) prior to execution of an action.

All of the platforms provide a facility for sorting a list
of agents, most often relying on the underlying sorting li-
braries of their implementation languages. Repast and MA-
SON assume that the modeler will use a sort method from
either the Java Collections orArrays class. Swarm provides
a wrapper for a C library tool called QSort. For NetLogo,
we had to modify the example approach for randomizing
execution order (Section 3.3.9) so it instead sorted by de-
creasing bug size.

3.3.11 Version 11: Optimal Movement

In this version, the model specification calls for the bugs
to move to the unoccupied habitat cell, within a limited
distance, having the most food. This is an example of goal-
oriented decision-making by agents.

All platforms except Swarm provide methods to find all
cells within a specified distance in a grid space. (In fact,
MASON and Repast provide a variety of methods for dif-
ferent definitions of “neighbor”—although the definitions
are not documented in Repast.) The user must then write
code to loop through the list of neighbor cells to find the
one with the most food. (Starting in version 15, the list
of neighbor cells was shuffled randomly to avoid artifacts
of multiple neighbor cells having exactly the same food
availability.)

3.3.12 Version 12: Mortality and Reproduction

We added mortality and reproduction to the “grow”
method of the bugs: when a bug reaches a size of 10, it
produces offspring and dies. Introducing births and deaths
into StupidModel complicated it considerably. First, it is
important to exactly specify what should happen when an
agent is born: should an agent begin executing its actions
during the time step it was born in, or in the next tick? If
an agent dies, is it immediately removed from the space
so its location is available for other agents? Also, how do
we prevent the schedule from executing actions for newly
dead agents? The platforms vary considerably in whether
they handle these sorts of details or leave them to the user.

In Repast and Swarm, the list of agents cannot be mod-
ified in the middle of a scheduled action. A bug created
during its parent’s grow method cannot be immediately
added to the bug list, and the dead parent cannot remove
itself immediately from the bug list, because the scheduler
is actively stepping through the bug list. We avoided this
limitation in a typical way, adding new bugs to a separate
“new agent” list and adding dead bugs to a “dead agent”
list. Then a separate method must be scheduled later to add
the new bugs to, and remove the dead ones from, the master
bug list.

In MASON, however, we dealt with these problems
by copying the list of agents and scheduling the “grow”
action on this temporary agent list. When an agent died
or was born, it was immediately removed from or added
to the master agent list. Interestingly, this approach was
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facilitated by the complicated coding needed to overcome
MASON’s requirement that only actions called “step” can
be scheduled (Section 3.3.2).

In contrast to the clumsy and complex methods to
handle agent reproduction and death in the other plat-
forms, NetLogo provides simple methods for removing
and adding agents, automatically updating the agent list
and dealing with the scheduling issues. However, it is not
clear from the NetLogo documentation exactly how these
tasks are done; for example, does a new agent execute its
actions on the same time step that it was created?

3.3.13 Version 13: Population Graph

For all platforms, adding a line graph for bug population
was nearly identical to adding a histogram (Section 3.3.6).

3.3.14 Version 14: Random Normal Initial Size

This version illustrates the common technique of draw-
ing random values from a specified statistical distribution.
All the platforms except MASON provided simple tools
for defining and using normal distributions. Swarm and
Repast provide extensive random libraries: Bernoulli, bi-
nomial, exponential, log–normal, Poisson, etc., distribu-
tions. NetLogo provides most of these distributions. We
did not implement the random normal bug size in MASON
because MASON provides only an undocumented Gaus-
sian distribution, which presumably returns values from a
standard normal distribution.

3.3.15 Version 15: Habitat Data Read From a File

The introduction of “real” habitat data brought several
challenges, discussed separately.

Reading input data. In Repast, MASON, and Swarm,
we needed to write code to read file input from scratch.
NetLogo has a simple file reader that was easily used.

Scaling space objects to file data. In many scientific
models, the space dimensions depend on what input data
are used, so are best determined from the input file. In
Swarm and Repast, we could readily (using our own code)
read the input file, determine the space dimensions, and
then use those dimensions to create the space and spatial
display objects. In MASON, it was not clear how this can
be done, because of MASON’s separation of its “UI” dis-
play elements from the rest of the model and the way in
which the UI interacts with the model. In MASON’s exam-
ple models, the UI always makes its display before build-
ing the rest of the model, so display dimensions cannot be
determined by the model. As a result, the most straightfor-
ward way to write version 15 of StupidModel in MASON
was to read the input file twice: first while creating the
display (to obtain the space dimensions) and again while
building the model itself.

NetLogo does not allow the space size to be determined
from a file, or by the code at all. Instead, the dimensions

of the space must be set manually via a menu on the user
interface.

Non-toroidal spaces. We made the space non-toroidal
to be realistic. It was easy to change to a non-toroidal
space in Swarm, Repast, and MASON, either by switch-
ing to a built-in non-toroidal space class (Repast) or by no
longer performing the toroidal calculations (Swarm and
MASON).

NetLogo spaces are inherently toroidal and there is no
easy way to make them non-toroidal. Instead, we had to
modify the “move” action of bugs to prevent them from
crossing over a space boundary.

3.3.16 Predators

This version adds a second type of agent to the model:
predators that hunt bugs. This required, for all platforms,
adding a new class for predators and scheduling their
“hunt” action. NetLogo lets users define “breeds”, differ-
ent types of agent. Each breed has its own built-in agent list
and can have different actions scheduled separately from
other breeds. Hence, for this version we created predators
as a separate breed from bugs. All breeds are automatically
displayed on the animation window.

Predators are allowed to occupy the same cell as a bug,
so in MASON, Repast, and Swarm we could not simply put
the predators in the same space object used by bugs—the
simple grid space classes we used allow only one object
per cell. We could have modified the bug space by putting
a list object in each cell and storing bugs and predators
on the list; MASON and Repast also provide alternative
grid spaces that can contain more than one object per cell.
These approaches have the disadvantage of requiring (e.g.,
to see if there is a bug in a cell) code to go through the
list of objects in the cell and test whether any of them are
bugs. Instead, we used a straightforward solution: adding
new space and display objects to contain and display the
predators.

3.3.17 Support for Simulation Experiments

NetLogo has a built-in “BehaviorSpace” tool for au-
tomating experiments. Using a menu, the user can define
scenarios by specifying values of one or more global vari-
ables, set the number of replicates for each scenario, and
specify stopping rules to end each model run. Repast has
a menu-driven tool (“Multi-Run”) similar to NetLogo’s
BehaviorSpace in design, but its performance and docu-
mentation were not yet reliable. Repast also has an exper-
iment manager (“batch mode”) controlled via an input file
(“parameter file”). Swarm and MASON have no tools for
automating experiments. Swarm’s design can help users
write their own: programmers can design an “experiment
swarm” to initialize and execute a series of model swarm
runs.

We did not test Repast’s “batch mode” but inferred
from documentation that it bypasses Repast’s graphical
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control panel. The Repast convention for bypassing user-
programmed graphical displays (which we did implement)
appears to be writing a separate version of the model code
in which displays are not created. The situation is similar in
Swarm: batch mode (which in Swarm simply means non-
graphics) is invoked by a run parameter that tells the code
whether control panels and displays should be created, but
some programming is required. The Swarm convention is
to write a “batch swarm”, which executes the model swarm
without creating any graphics; observer and batch swarms
are both attached to a model and the run-time parameter
determines which to execute. MASON’s graphical control
panel lets users switch displays off and on at will during
a model run; in addition, a separate batch version of the
model is easily made by adding a simple “main” method
to the model class and running it instead of the UI class.
To run a NetLogo model without graphic updates, users
can (i) manually switch off the display of agent locations
in space at any time and (ii) disable graphs by removing
their update statements from the code.

3.4 Platform Comparison: Execution Speed

The time required to execute 1000 time steps of various
versions of StupidModel varied widely (Table 3), but some
results were unexpected. MASON was the fastest platform
for all but the simplest version of StupidModel. Repast
took 1–54% longer than MASON to execute the various
versions, with the smallest difference for version 16, the
most computationally intensive. NetLogo run times were
three to five times those of MASON, but NetLogo was as
fast as MASON (and faster than Repast) for version 1.

Swarm was by far the fastest platform for version 1
of StupidModel. For the remaining versions, however,
Swarm was surprisingly slow: Objective-C Swarm execu-
tion was seven to 14 times longer than MASON, and Java
Swarm 19–31 times longer. Profiling (a compiler option
that determines the time spent in each method) version
3 of Objective-C StupidModel indicated that no particu-
lar methods or programming techniques were inordinately
slow. The fact that Swarm went from fastest to slowest
when we increased the numbers of message calls and ob-
jects may indicate that it can be fast for models with fewer
interactions and more computation, and slow for models
with more method calls and less computation.

For version 16, batch mode significantly improved the
speed for the Java platforms. For MASON and Repast,
turning off graphic output reduced execution time by 75%;
for Java Swarm, the reduction was 35%. Batch mode did
not speed up Objective-C Swarm, presumably because
its run time is dominated by non-graphical operations. In
batch mode, MASON and Repast were nearly identical in
execution time.

An analysis of model size versus execution time shows
some interesting differences among platforms. Version 3
of StupidModel adds 10,000 habitat cells to the 100 bugs;
for versions 12 and higher, the number of bugs emerges

from mortality and reproduction (the time-averaged num-
ber of bugs is reported in Table 3); and versions 15 and 16
have even more habitat objects. For MASON and Repast,
execution time appears to depend mainly on the number of
bugs in the model, with minimal influence of the number of
habitat cells. However, the execution time of NetLogo and
Swarm appears influenced by the number of habitat cells:
execution time jumps between versions 1 and 3. Possible
reasons for this difference are the overhead in NetLogo and
Swarm for object creation and its corresponding memory
management, or higher overhead in method calls (the ver-
sions with more objects also use more method calls).

3.5 Key Issues in Agent-based Modeling Software

Our experience in using and teaching agent-based mod-
eling platforms revealed the following issues that affect
their productivity. This section is not intended as a fur-
ther comparison of platforms but instead to inform users
and developers about factors that can make platforms more
useful.

The framework and library paradigm is good—but
the framework is important. The software paradigm pi-
oneered by Swarm—a framework of concepts, such as
swarms, collections, actions, schedules and observers, and
the software implementing them—was designed to give
scientists a standardized way to think about and describe
their models and then to translate the model description
into working software [4]. This paradigm seems intuitive
to people already thinking about systems in an individual-
based way: what types of agents are in the system, what
behaviors do they execute and when, and how do we ob-
serve what emerges? Another important advantage of the
paradigm is that it does not appear to limit the type of
model that can be implemented; our experience has been
that scientists avoid platforms that appear customized for a
particular type of model because they assume it will be dif-
ficult to implement their own—inevitably unique—model.
Using a standard programming language, such as Java, un-
doubtedly helps convince users that the framework and li-
brary platforms will allow them to do whatever they want.
In contrast, platforms that are menu-driven (e.g., Repast-
Py; AgentSheets) or use domain-specific primitives (e.g.,
Mobidyc [11]) have not caught on because they clearly
restrict the modeler.

Compared to Swarm, Repast and MASON seem more
like libraries and less like frameworks, which makes the
transition from ideas to working simulator more diffi-
cult. MASON and Repast allow models to be organized
in a Swarm-like framework, but their documentation and
teaching materials do not emphasize the conceptual as-
pects of model design. MASON’s “model” and “model-
WithUI” concepts (Table 2) at least provide a standard
framework for separating the model and graphical ob-
servers (as Swarm’s “model swarm” and “observer swarm”
concepts do), but Repast, in its software design and doc-
umentation, seems to require or encourage little standard-
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Table 3. Number of bugs, total number of objects (bugs, habitat cells, and predators), and execution time (mean of five observations)
for seven versions of StupidModel and version 16 in batch mode

Execution time (s)

Number Number Java Objective-C
Version of Bugs Objects MASON NetLogo Repast Swarm Swarm

1 100 100 7.9 8.1 12 6.1 2.2
3 100 10,100 10 30 12 379 68
8 100 10,100 9 31 12 176 70

11 100 10,100 11 49 13 245 85
12 150 10,150 12 63 16 292 95
15 1760 29,800 113 417 124 2984 1528
16 1660 29,900 122 314 123 2338 1029

16 batch 1660 29,900 30 229 31 1543 1000

ization. It would be easier to teach these platforms (and
even to motivate students to bother with them) if their li-
braries were more clearly linked to a well-defined, standard
conceptual framework.

Platform complexity is a major concern. All the plat-
forms are large, with dozens of classes and hundreds of
methods. This complexity is intimidating and makes it dif-
ficult to find what one needs or to determine whether a
tool for some particular task is available. However, these
classes provide useful tools, so smaller is not necessarily
better. Unfortunately, the platforms too often suffer from
problems that aggravate the negative effects of their com-
plexity, as follows.

• Lack of a clear philosophy and decision process for
what will or will not be included.

• Software not in well-organized packages or libraries.

• Lack of complete documentation. Users should not
have to read source code to get a basic idea of how
a platform’s methods work.

• Failure to use common design patterns widely. For
example, only Swarm’s classes for collections of
objects (lists, arrays, maps) are designed so that
any class operating on collections (for scheduling,
data collection, graphing, etc.) can use any kind of
collection.

IDEs such as Eclipse are very useful. Although
Eclipse is itself complex, it was helpful from the start
for students learning Java and Repast together. Particu-
larly valuable are instant identification and help with syn-
tax errors, menu tools for mundane tasks such as adding
getter and setter methods, and the debugger—not only for
testing code but also for understanding how an ABM exe-
cutes (e.g., is the scheduler really randomizing the order in
which agents execute?). NetLogo’s integral development
environment provides many of these benefits and is a major
contributor to NetLogo’s ease to use.

Scientific modelers need scientific tools, from the
start. As agent-based modeling matures as a research ap-
proach, tools for scientific analysis are needed [12]. We
found that students building scientific models need statis-
tical output (e.g., maximum, minimum, variance of agent
properties) after only one day’s work. Statistics often need
to be broken out by agent categories (e.g., age, sex). These
capabilities are necessary to give users a view of simula-
tion results that is more complete than graphical displays
yet easy to generate and analyze. None of the platforms
provides a complete tool for statistical output. Experiment
managers that automate execution of multiple scenarios
and replicates are also essential.

Understanding causality is an unfulfilled need. Mod-
elers are constantly faced with the problem of figuring out
why unexpected results arose in an ABM and whether the
results are useful or only the consequence of mistakes.
Probes and debuggers are helpful, but only for observing
a few individuals or a small part of the software. Software
tools for understanding causality in full-scale simulations
are generally lacking. We find optional output files pro-
viding details of a particular part of the model useful, but
additional tools need to be invented.

Is Java the right language? There are many differences
between Java and Objective-C; our experience indicates
that the following are important.

• Syntax and object typing. Objective-C code can
be much shorter and easier to read than Java, in part
because of its messaging syntax. Another reason is
Java’s strong typing: almost any use of an object re-
quires telling the compiler the object’s type. Because
these platforms use generic classes extensively, pro-
grammers must frequently use Java’s “casting” op-
erator. Casting makes code harder to write and read
and is a common frustration to beginners. With
Objective-C’s weak typing, Swarm users can operate
on objects (e.g., schedule their actions, collect data
from them) without worrying about what class they
are. However, strong typing allows the compiler to
find more errors, an important advantage.
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• Error checking and garbage collection. Java pro-
vides much more help fixing run-time errors; in
Objective-C even basic mistakes, such as having an
array index out of bounds, cause cryptic, unhelp-
ful error statements. Java’s “garbage collection”—
automatic removal of unused objects—is also a ma-
jor advantage: even simple ABMs can create mil-
lions of objects very rapidly, so failure of Objective-
C programs to drop unused objects can degrade per-
formance quickly. Java precludes the need to even
explain this problem to beginners.

• Availability of development tools. Many more de-
velopment tools such as IDEs and libraries are
available for Java. While the Unix-based tools for
Objective-C (e.g., the Emacs editor, the gdb de-
bugger) are productive for experienced users, there
appear to be no tools for Objective-C as beginner-
friendly or powerful as Eclipse (except in the new
MacIntosh operating systems, with which the au-
thors are unfamiliar).

4. Conclusions and Recommendations

The evolution of ABM platforms over the past ten or
more years has been fascinating: more scientists and stu-
dents take up more advanced modeling as platforms im-
prove, while platform developers try to adapt to the grow-
ing and changing user communities. Our experience as
modelers and instructors has been that software develop-
ment remains a significant barrier to the use of ABMs, es-
pecially for the types of modeling and analysis needed to
address substantial, real-world scientific problems. There-
fore, we begin this section by attempting to provide guid-
ance to potential platform users, and end by recommending
priorities for the continued development and improvement
of ABM platforms.

4.1 Which Platform is Right?

While there are benefits to standardization of tools, the
variety of ABM platforms and their objectives also has
its benefits. We cannot say that one platform is best for
all modelers. Instead, we offer the following conclusions
about each. We remind readers of the following: (i) these
platforms continue to evolve, some rapidly; (ii) we could
not attempt to explore all the ways our example models
could be implemented in each platform and instead fol-
lowed what seemed simple and intuitive approaches; (iii)
there are many other platforms that we did not review.

NetLogo, with its heritage as an educational tool, stands
out for its ease of use and excellent documentation. It is
easy to recommend NetLogo for models that are (i) com-
patible with its paradigm of short-term, local interaction
of agents and a grid environment and (ii) not extremely
complex. We also strongly recommend NetLogo for pro-

totyping models that may later be implemented in lower-
level platforms: starting to build a model in NetLogo can
be a quick and thorough way to explore design decisions.
Its execution speed may not be a significant limitation for
many applications, especially compared to the potential re-
duction in programming time. Experienced programmers,
however, could be uncomfortable with NetLogo’s simpli-
fied programming environment. Restrictions, such as hav-
ing all code in one “file”, enforce less organizational dis-
cipline than required in Java or Objective-C and can be
cumbersome for large models. NetLogo provides an error
checker and makes it easy to develop and try code in small
steps, but lacks IDE features such as a stepwise debugger.
Reproducibility may be a concern for some scientific users
because NetLogo does not provide immediate access to the
algorithms implementing its primitives.

Java Swarm seems not to offer a good trade-off of
the relative benefits of Java and Objective-C. Java Swarm
certainly met its design objective of providing Swarm for
Java users; however, now that alternative Java platforms
are available, its drawbacks are clear. They include the fol-
lowing: (i) somewhat clumsy work-arounds for Java’s in-
compatibility with key Swarm features (e.g., selectors; the
createBegin and createEnd paradigm); (ii) the difficulty of
debugging run-time errors that occur in the Objective-C li-
braries; (iii) the source code being in Objective-C; (iv) slow
execution speed. However, many of the positive aspects of
Swarm discussed below also apply to Java Swarm.

MASON could be a good choice for experienced pro-
grammers working on models that are computationally in-
tensive, for example, having many agents or long run times.
MASON currently offers relatively few tools but supports
computationally intensive models by allowing jobs to be
moved among machines and allowing graphics to be de-
tached and re-attached. Our rough execution speed evalua-
tion found MASON generally to be the fastest platform, but
Repast execution times were only 1–54% longer, with the
difference generally decreasing as models became more
computationally intensive. Several of MASON’s innova-
tions are quite clever, especially including all of the draw-
ing methods in the user interface class, having the sched-
uler skip objects that have been destroyed, and a powerful
control panel.

MASON is likely to be particularly challenging for
novices or for ABMs with complex logic. Its scheduling
concept, in which only methods named “step” can be exe-
cuted, is designed for speed but complicates programming.
Some things we did not like about MASON are the follow-
ing: (i) its non-standard and sometimes confusing termi-
nology (Table 2); (ii) its incompatible collection classes—
the “bag” class could be useful but is incompatible with
the scheduler; (iii) its lack of a terminal window to which
debugging print statements can be written when working
within Eclipse.

Objective-C Swarm is the father of the framework
and library platforms and it still has advantages. Swarm
is stable (new versions and even bug discoveries are rare),
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is relatively small and well organized while providing a
fairly complete set of tools, has a clear conceptual basis
and a clever design, and allows clear separation of graph-
ical interfaces and the model. Its concept of a “swarm”
helps organize models: models can be designed and im-
plemented as a hierarchy of separate swarms, each with its
own collections of objects and schedule of their actions.
This capability provides a level of organization useful for
simple models (e.g., separate swarms for the model and its
graphical interface) and especially for complexABMs. (To
represent the diverse life stages of a salmon population, two
of the authors, Jackson and Railsback, have implemented a
model with five kinds of swarm, with a variable number of
swarms—each with its own schedule—instantiated as the
model runs.) The disadvantages of Objective-C Swarm are
primarily those of the Objective-C language (Section 3.5):
a lack of novice-friendly development tools, weak error
handling, and the lack of “garbage collection”. These dis-
advantages are aggravated by an even lower availability of
documentation and tutorial materials than for other plat-
forms. Unfortunately, our tests do not allow clear execu-
tion speed conclusions for Swarm: for some types of model
(e.g., version 1 of StupidModel) Swarm is much faster than
the Java platforms and for other types of model Swarm is
much slower. Objective-C should be faster for pure compu-
tation, but Swarm’s use of its own code for low-level func-
tions such as defining objects and storing their variables—
the design that allows unique capabilities such as Swarm’s
probes—may have a speed cost.

Repast is certainly the most complete Java platform.
In addition to implementing most of Swarm’s functions,
Repast has added such capabilities as the ability to reset
and restart models from the graphical interface and the
“Multi-run” experiment manager. We found its execution
speed to be good compared to the other platforms. Repast
also includes many classes for geographical and network
functions.

While Repast is likely a good choice among the frame-
work and library platforms for many scientists, we found
it disappointing in several ways. While several major at-
tempts to make Repast more accessible to beginners have
been made, some of its basic elements seem incomplete
or not very carefully designed. To start, the software dis-
tribution could be better organized, for example, by la-
beling packages primarily by their function and separat-
ing demonstration models and domain-specific tools from
the core software. Examples of questionable design de-
cisions include the following. (i) The schedule executes
top-level actions in randomized order (in our experience,
unlikely to be desirable) yet there is no built-in method
to randomize the order in which one action is executed
over a list of agents (commonly used to represent concur-
rent actions). (ii) Several incompatible types of collections
are used (Java’s ArrayList and Vector; Repast’s Default-
Group) while the scheduler can only use ArrayList. (iii)
The DataRecorder is handy but does not provide a variety
of commonly used statistics. As with MASON and Swarm,

basic documentation is largely incomplete. The Repast de-
velopment program is tremendously productive and help-
ful to the scientific community and none of these problems
is severe, but tidying up and fully documenting Repast’s
core might benefit its users more than new development.

4.2 Development Priorities

If we could direct the work on the framework and li-
brary platforms, what would we do? Our recommended
development priorities are listed from near- to long-term.

1. Fulfill the most critical, immediate need: complete
documentation of classes and methods, with exam-
ples. Documentation has been a persistent problem,
probably because developing and maintaining it is
difficult and unglamorous, and good programmers
are not always good at writing documentation. Yet
nothing would do more to improve the usability of
these platforms.

2. Continue developing—and maintaining—how-to
documents and template models. Starting a new
project by modifying a template model and copy-
ing examples can greatly reduce startup time and
teach users how to do tasks that are common yet not
so simple.

3. Integrate the software library with an IDE such as
Eclipse. We found Eclipse more productive, even
for beginners, than menu-driven (e.g., Repast Py) or
graphical systems for building models.

4. Revive the “framework” part of the platform: estab-
lish the software library as one part of an overall
process leading modelers through the model design,
analysis, and publication cycle. One of the most
important purposes of a platform is to provide a
common language for thinking about and describ-
ing ABMs (see Chapter 8 of Grimm and Railsback
[2]). This task is likely to require more thinking and
writing (see, for example, Minar et al. [4]) than soft-
ware development. Following standard terminology
(Table 2) makes users’ lives easier.

5. Make sure the framework accommodates complex,
multilevel models. The growing use of ABMs to ad-
dress real-world problems means such models will
become more common.

6. Provide powerful tools for generating statistical out-
put. (For example, two of the authors, Jackson and
Railsback, have written a Swarm tool that creates
output files providing a variety of statistics on an
agent collection, broken out by categorical variables
such as species, age, etc.) Existing statistical li-
braries could be used, but this capability needs to
be built-in and easy to use because it is needed by
even the most novice modelers.
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7. Provide powerful tools for setting up and execut-
ing simulation experiments. (One of the authors,
Jackson, has written an experiment manager in
Objective-C Swarm that can manipulate input file
names and parameters for any class, and can send
different parameter values to different instances of
the same class.)

8. Look for ways to improve the trade-off between ease
of use and generality of platforms. One way to do so
is by making common tasks (e.g., displaying spaces
and agents; adding and removing agents from the
scheduled list; looping through lists) easier to pro-
gram, for example by using higher-level (NetLogo-
like) code. High-level tools that hide some functions
are very helpful and still allow models to be repro-
ducible and flexible—if the tools are thoroughly doc-
umented (so users know how they work in full detail,
which they do not with NetLogo) and can be overrid-
den. Another technique is better use of standardized
design patterns: making as many methods as pos-
sible as familiar as possible to users. Graphical or
menu-driven tools for adding observer capabilities
can be powerful, as illustrated by NetLogo and plat-
forms such as Borland Delphi.

9. Research technologies for testing, analyzing, and
understanding ABMs. Pervasive testing of ABMs
(both verifying a code’s accurate implementation
of its model and validating the model’s usefulness)
and understanding causality—how results arose—
are difficult and frustrating problems [5]. Develop-
ing tools for these problems should be a long-term
goal.
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