
Debugging : one of the joys of Smalltalk!

To encourage fearless programming, the 'debugger' shouldn't 
be called a 'debugger'. It's not that you're cleaning up 
mistakes, but most of the time you're just exploring how 
something works. A name as for example 'flowInspector', 
'liveInspector' more reflects and encourages the actual 
process. When I started programming in Smalltalk I didn't use 
the power of the debugger, after reading the first lines of the 
debug message I went back to my code and tried to fix the 
bug. I almost never pushed the debug button. Now, 
'debugging' my code is actually more than half the part of 
'making the solution'. I'm not fearing the debugger anymore. 
I just program/prototype my unclear ideas, I let come alive in 
the 'liveInspector', and refine them to a better solution. 
Mathieu van Echtelt



Do not assume that a method answers what you expect
it to answer

Standard guidelines 
to minimize bugs’ proliferation

Use parentheses when sending several keyword messages
in one expression

Avoid modifying a collection while iterating over it

Avoid altering the behaviour of well-known messages



« message not understood self »

usually means that a period (to separate two consecutive
expressions) is missing

Standard error messages 

« does not understand messageName »

usually means the receiver is not of the right kind
�it may be undefined (nil)
�« does not understand whileTrue: » means
the receiver is not a block (enclosed by [])



« Stack » of
messages sending

Code editor

Inspector for 
instance variables

Inspector for 
temporary variables

The « Debuger » window


